![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0n0n1ge2 | Structured version Visualization version GIF version |
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
Ref | Expression |
---|---|
nn0n0n1ge2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12430 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1cnd 11157 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
3 | 1, 2, 2 | subsub4d 11550 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1))) |
4 | 1p1e2 12285 | . . . . . 6 ⊢ (1 + 1) = 2 | |
5 | 4 | oveq2i 7373 | . . . . 5 ⊢ (𝑁 − (1 + 1)) = (𝑁 − 2) |
6 | 3, 5 | eqtr2di 2794 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
7 | 6 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
8 | 3simpa 1149 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
9 | elnnne0 12434 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
10 | 8, 9 | sylibr 233 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ) |
11 | nnm1nn0 12461 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ0) |
13 | 1, 2 | subeq0ad 11529 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 ↔ 𝑁 = 1)) |
14 | 13 | biimpd 228 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 → 𝑁 = 1)) |
15 | 14 | necon3d 2965 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁 − 1) ≠ 0)) |
16 | 15 | imp 408 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
17 | 16 | 3adant2 1132 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
18 | elnnne0 12434 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ≠ 0)) | |
19 | 12, 17, 18 | sylanbrc 584 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ) |
20 | nnm1nn0 12461 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((𝑁 − 1) − 1) ∈ ℕ0) |
22 | 7, 21 | eqeltrd 2838 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) ∈ ℕ0) |
23 | 2nn0 12437 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
24 | 23 | jctl 525 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
25 | 24 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
26 | nn0sub 12470 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) |
28 | 22, 27 | mpbird 257 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 class class class wbr 5110 (class class class)co 7362 0cc0 11058 1c1 11059 + caddc 11061 ≤ cle 11197 − cmin 11392 ℕcn 12160 2c2 12215 ℕ0cn0 12420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-2 12223 df-n0 12421 |
This theorem is referenced by: nn0n0n1ge2b 12488 umgrclwwlkge2 28977 clwwisshclwwslem 29000 nnne1ge2 43599 iccpartiltu 45688 |
Copyright terms: Public domain | W3C validator |