| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elccinfty | Structured version Visualization version GIF version | ||
| Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-elccinfty | ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-inftyexpi 37202 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
| 2 | 1 | funmpt2 6558 | . . . 4 ⊢ Fun +∞ei |
| 3 | 2 | jctl 523 | . . 3 ⊢ (𝐴 ∈ dom +∞ei → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
| 4 | opex 5427 | . . . . 5 ⊢ 〈𝑥, ℂ〉 ∈ V | |
| 5 | 4, 1 | dmmpti 6665 | . . . 4 ⊢ dom +∞ei = (-π(,]π) |
| 6 | 5 | eqcomi 2739 | . . 3 ⊢ (-π(,]π) = dom +∞ei |
| 7 | 3, 6 | eleq2s 2847 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
| 8 | fvelrn 7051 | . 2 ⊢ ((Fun +∞ei ∧ 𝐴 ∈ dom +∞ei) → (+∞ei‘𝐴) ∈ ran +∞ei) | |
| 9 | df-bj-ccinfty 37207 | . . . . 5 ⊢ ℂ∞ = ran +∞ei | |
| 10 | 9 | eqcomi 2739 | . . . 4 ⊢ ran +∞ei = ℂ∞ |
| 11 | 10 | eleq2i 2821 | . . 3 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei ↔ (+∞ei‘𝐴) ∈ ℂ∞) |
| 12 | 11 | biimpi 216 | . 2 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei → (+∞ei‘𝐴) ∈ ℂ∞) |
| 13 | 7, 8, 12 | 3syl 18 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4598 dom cdm 5641 ran crn 5642 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 -cneg 11413 (,]cioc 13314 πcpi 16039 +∞eicinftyexpi 37201 ℂ∞cccinfty 37206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-bj-inftyexpi 37202 df-bj-ccinfty 37207 |
| This theorem is referenced by: bj-pinftyccb 37216 |
| Copyright terms: Public domain | W3C validator |