![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elccinfty | Structured version Visualization version GIF version |
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-elccinfty | ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-inftyexpi 36578 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
2 | 1 | funmpt2 6577 | . . . 4 ⊢ Fun +∞ei |
3 | 2 | jctl 523 | . . 3 ⊢ (𝐴 ∈ dom +∞ei → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
4 | opex 5454 | . . . . 5 ⊢ 〈𝑥, ℂ〉 ∈ V | |
5 | 4, 1 | dmmpti 6684 | . . . 4 ⊢ dom +∞ei = (-π(,]π) |
6 | 5 | eqcomi 2733 | . . 3 ⊢ (-π(,]π) = dom +∞ei |
7 | 3, 6 | eleq2s 2843 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
8 | fvelrn 7068 | . 2 ⊢ ((Fun +∞ei ∧ 𝐴 ∈ dom +∞ei) → (+∞ei‘𝐴) ∈ ran +∞ei) | |
9 | df-bj-ccinfty 36583 | . . . . 5 ⊢ ℂ∞ = ran +∞ei | |
10 | 9 | eqcomi 2733 | . . . 4 ⊢ ran +∞ei = ℂ∞ |
11 | 10 | eleq2i 2817 | . . 3 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei ↔ (+∞ei‘𝐴) ∈ ℂ∞) |
12 | 11 | biimpi 215 | . 2 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei → (+∞ei‘𝐴) ∈ ℂ∞) |
13 | 7, 8, 12 | 3syl 18 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 〈cop 4626 dom cdm 5666 ran crn 5667 Fun wfun 6527 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 -cneg 11442 (,]cioc 13322 πcpi 16007 +∞eicinftyexpi 36577 ℂ∞cccinfty 36582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-fv 6541 df-bj-inftyexpi 36578 df-bj-ccinfty 36583 |
This theorem is referenced by: bj-pinftyccb 36592 |
Copyright terms: Public domain | W3C validator |