Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elccinfty Structured version   Visualization version   GIF version

Theorem bj-elccinfty 37175
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-elccinfty (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)

Proof of Theorem bj-elccinfty
StepHypRef Expression
1 df-bj-inftyexpi 37168 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
21funmpt2 6539 . . . 4 Fun +∞ei
32jctl 523 . . 3 (𝐴 ∈ dom +∞ei → (Fun +∞ei𝐴 ∈ dom +∞ei))
4 opex 5419 . . . . 5 𝑥, ℂ⟩ ∈ V
54, 1dmmpti 6644 . . . 4 dom +∞ei = (-π(,]π)
65eqcomi 2738 . . 3 (-π(,]π) = dom +∞ei
73, 6eleq2s 2846 . 2 (𝐴 ∈ (-π(,]π) → (Fun +∞ei𝐴 ∈ dom +∞ei))
8 fvelrn 7030 . 2 ((Fun +∞ei𝐴 ∈ dom +∞ei) → (+∞ei𝐴) ∈ ran +∞ei)
9 df-bj-ccinfty 37173 . . . . 5 = ran +∞ei
109eqcomi 2738 . . . 4 ran +∞ei = ℂ
1110eleq2i 2820 . . 3 ((+∞ei𝐴) ∈ ran +∞ei ↔ (+∞ei𝐴) ∈ ℂ)
1211biimpi 216 . 2 ((+∞ei𝐴) ∈ ran +∞ei → (+∞ei𝐴) ∈ ℂ)
137, 8, 123syl 18 1 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cop 4591  dom cdm 5631  ran crn 5632  Fun wfun 6493  cfv 6499  (class class class)co 7369  cc 11042  -cneg 11382  (,]cioc 13283  πcpi 16008  +∞eicinftyexpi 37167  cccinfty 37172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-bj-inftyexpi 37168  df-bj-ccinfty 37173
This theorem is referenced by:  bj-pinftyccb  37182
  Copyright terms: Public domain W3C validator