Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elccinfty | Structured version Visualization version GIF version |
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-elccinfty | ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-inftyexpi 35378 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
2 | 1 | funmpt2 6473 | . . . 4 ⊢ Fun +∞ei |
3 | 2 | jctl 524 | . . 3 ⊢ (𝐴 ∈ dom +∞ei → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
4 | opex 5379 | . . . . 5 ⊢ 〈𝑥, ℂ〉 ∈ V | |
5 | 4, 1 | dmmpti 6577 | . . . 4 ⊢ dom +∞ei = (-π(,]π) |
6 | 5 | eqcomi 2747 | . . 3 ⊢ (-π(,]π) = dom +∞ei |
7 | 3, 6 | eleq2s 2857 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
8 | fvelrn 6954 | . 2 ⊢ ((Fun +∞ei ∧ 𝐴 ∈ dom +∞ei) → (+∞ei‘𝐴) ∈ ran +∞ei) | |
9 | df-bj-ccinfty 35383 | . . . . 5 ⊢ ℂ∞ = ran +∞ei | |
10 | 9 | eqcomi 2747 | . . . 4 ⊢ ran +∞ei = ℂ∞ |
11 | 10 | eleq2i 2830 | . . 3 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei ↔ (+∞ei‘𝐴) ∈ ℂ∞) |
12 | 11 | biimpi 215 | . 2 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei → (+∞ei‘𝐴) ∈ ℂ∞) |
13 | 7, 8, 12 | 3syl 18 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 〈cop 4567 dom cdm 5589 ran crn 5590 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 -cneg 11206 (,]cioc 13080 πcpi 15776 +∞eicinftyexpi 35377 ℂ∞cccinfty 35382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-bj-inftyexpi 35378 df-bj-ccinfty 35383 |
This theorem is referenced by: bj-pinftyccb 35392 |
Copyright terms: Public domain | W3C validator |