Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elccinfty Structured version   Visualization version   GIF version

Theorem bj-elccinfty 36399
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-elccinfty (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)

Proof of Theorem bj-elccinfty
StepHypRef Expression
1 df-bj-inftyexpi 36392 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
21funmpt2 6588 . . . 4 Fun +∞ei
32jctl 523 . . 3 (𝐴 ∈ dom +∞ei → (Fun +∞ei𝐴 ∈ dom +∞ei))
4 opex 5465 . . . . 5 𝑥, ℂ⟩ ∈ V
54, 1dmmpti 6695 . . . 4 dom +∞ei = (-π(,]π)
65eqcomi 2740 . . 3 (-π(,]π) = dom +∞ei
73, 6eleq2s 2850 . 2 (𝐴 ∈ (-π(,]π) → (Fun +∞ei𝐴 ∈ dom +∞ei))
8 fvelrn 7079 . 2 ((Fun +∞ei𝐴 ∈ dom +∞ei) → (+∞ei𝐴) ∈ ran +∞ei)
9 df-bj-ccinfty 36397 . . . . 5 = ran +∞ei
109eqcomi 2740 . . . 4 ran +∞ei = ℂ
1110eleq2i 2824 . . 3 ((+∞ei𝐴) ∈ ran +∞ei ↔ (+∞ei𝐴) ∈ ℂ)
1211biimpi 215 . 2 ((+∞ei𝐴) ∈ ran +∞ei → (+∞ei𝐴) ∈ ℂ)
137, 8, 123syl 18 1 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  cop 4635  dom cdm 5677  ran crn 5678  Fun wfun 6538  cfv 6544  (class class class)co 7412  cc 11111  -cneg 11450  (,]cioc 13330  πcpi 16015  +∞eicinftyexpi 36391  cccinfty 36396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-bj-inftyexpi 36392  df-bj-ccinfty 36397
This theorem is referenced by:  bj-pinftyccb  36406
  Copyright terms: Public domain W3C validator