![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elccinfty | Structured version Visualization version GIF version |
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-elccinfty | ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-inftyexpi 37166 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
2 | 1 | funmpt2 6612 | . . . 4 ⊢ Fun +∞ei |
3 | 2 | jctl 523 | . . 3 ⊢ (𝐴 ∈ dom +∞ei → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
4 | opex 5484 | . . . . 5 ⊢ 〈𝑥, ℂ〉 ∈ V | |
5 | 4, 1 | dmmpti 6719 | . . . 4 ⊢ dom +∞ei = (-π(,]π) |
6 | 5 | eqcomi 2749 | . . 3 ⊢ (-π(,]π) = dom +∞ei |
7 | 3, 6 | eleq2s 2862 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
8 | fvelrn 7105 | . 2 ⊢ ((Fun +∞ei ∧ 𝐴 ∈ dom +∞ei) → (+∞ei‘𝐴) ∈ ran +∞ei) | |
9 | df-bj-ccinfty 37171 | . . . . 5 ⊢ ℂ∞ = ran +∞ei | |
10 | 9 | eqcomi 2749 | . . . 4 ⊢ ran +∞ei = ℂ∞ |
11 | 10 | eleq2i 2836 | . . 3 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei ↔ (+∞ei‘𝐴) ∈ ℂ∞) |
12 | 11 | biimpi 216 | . 2 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei → (+∞ei‘𝐴) ∈ ℂ∞) |
13 | 7, 8, 12 | 3syl 18 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 〈cop 4654 dom cdm 5695 ran crn 5696 Fun wfun 6562 ‘cfv 6568 (class class class)co 7443 ℂcc 11176 -cneg 11515 (,]cioc 13402 πcpi 16108 +∞eicinftyexpi 37165 ℂ∞cccinfty 37170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-iota 6520 df-fun 6570 df-fn 6571 df-fv 6576 df-bj-inftyexpi 37166 df-bj-ccinfty 37171 |
This theorem is referenced by: bj-pinftyccb 37180 |
Copyright terms: Public domain | W3C validator |