![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elccinfty | Structured version Visualization version GIF version |
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-elccinfty | ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-inftyexpi 36392 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩) | |
2 | 1 | funmpt2 6588 | . . . 4 ⊢ Fun +∞ei |
3 | 2 | jctl 523 | . . 3 ⊢ (𝐴 ∈ dom +∞ei → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
4 | opex 5465 | . . . . 5 ⊢ ⟨𝑥, ℂ⟩ ∈ V | |
5 | 4, 1 | dmmpti 6695 | . . . 4 ⊢ dom +∞ei = (-π(,]π) |
6 | 5 | eqcomi 2740 | . . 3 ⊢ (-π(,]π) = dom +∞ei |
7 | 3, 6 | eleq2s 2850 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
8 | fvelrn 7079 | . 2 ⊢ ((Fun +∞ei ∧ 𝐴 ∈ dom +∞ei) → (+∞ei‘𝐴) ∈ ran +∞ei) | |
9 | df-bj-ccinfty 36397 | . . . . 5 ⊢ ℂ∞ = ran +∞ei | |
10 | 9 | eqcomi 2740 | . . . 4 ⊢ ran +∞ei = ℂ∞ |
11 | 10 | eleq2i 2824 | . . 3 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei ↔ (+∞ei‘𝐴) ∈ ℂ∞) |
12 | 11 | biimpi 215 | . 2 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei → (+∞ei‘𝐴) ∈ ℂ∞) |
13 | 7, 8, 12 | 3syl 18 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ⟨cop 4635 dom cdm 5677 ran crn 5678 Fun wfun 6538 ‘cfv 6544 (class class class)co 7412 ℂcc 11111 -cneg 11450 (,]cioc 13330 πcpi 16015 +∞eicinftyexpi 36391 ℂ∞cccinfty 36396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 df-bj-inftyexpi 36392 df-bj-ccinfty 36397 |
This theorem is referenced by: bj-pinftyccb 36406 |
Copyright terms: Public domain | W3C validator |