Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elccinfty Structured version   Visualization version   GIF version

Theorem bj-elccinfty 37188
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-elccinfty (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)

Proof of Theorem bj-elccinfty
StepHypRef Expression
1 df-bj-inftyexpi 37181 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
21funmpt2 6521 . . . 4 Fun +∞ei
32jctl 523 . . 3 (𝐴 ∈ dom +∞ei → (Fun +∞ei𝐴 ∈ dom +∞ei))
4 opex 5407 . . . . 5 𝑥, ℂ⟩ ∈ V
54, 1dmmpti 6626 . . . 4 dom +∞ei = (-π(,]π)
65eqcomi 2738 . . 3 (-π(,]π) = dom +∞ei
73, 6eleq2s 2846 . 2 (𝐴 ∈ (-π(,]π) → (Fun +∞ei𝐴 ∈ dom +∞ei))
8 fvelrn 7010 . 2 ((Fun +∞ei𝐴 ∈ dom +∞ei) → (+∞ei𝐴) ∈ ran +∞ei)
9 df-bj-ccinfty 37186 . . . . 5 = ran +∞ei
109eqcomi 2738 . . . 4 ran +∞ei = ℂ
1110eleq2i 2820 . . 3 ((+∞ei𝐴) ∈ ran +∞ei ↔ (+∞ei𝐴) ∈ ℂ)
1211biimpi 216 . 2 ((+∞ei𝐴) ∈ ran +∞ei → (+∞ei𝐴) ∈ ℂ)
137, 8, 123syl 18 1 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cop 4583  dom cdm 5619  ran crn 5620  Fun wfun 6476  cfv 6482  (class class class)co 7349  cc 11007  -cneg 11348  (,]cioc 13249  πcpi 15973  +∞eicinftyexpi 37180  cccinfty 37185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-bj-inftyexpi 37181  df-bj-ccinfty 37186
This theorem is referenced by:  bj-pinftyccb  37195
  Copyright terms: Public domain W3C validator