| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elccinfty | Structured version Visualization version GIF version | ||
| Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-elccinfty | ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-inftyexpi 37168 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
| 2 | 1 | funmpt2 6539 | . . . 4 ⊢ Fun +∞ei |
| 3 | 2 | jctl 523 | . . 3 ⊢ (𝐴 ∈ dom +∞ei → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
| 4 | opex 5419 | . . . . 5 ⊢ 〈𝑥, ℂ〉 ∈ V | |
| 5 | 4, 1 | dmmpti 6644 | . . . 4 ⊢ dom +∞ei = (-π(,]π) |
| 6 | 5 | eqcomi 2738 | . . 3 ⊢ (-π(,]π) = dom +∞ei |
| 7 | 3, 6 | eleq2s 2846 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
| 8 | fvelrn 7030 | . 2 ⊢ ((Fun +∞ei ∧ 𝐴 ∈ dom +∞ei) → (+∞ei‘𝐴) ∈ ran +∞ei) | |
| 9 | df-bj-ccinfty 37173 | . . . . 5 ⊢ ℂ∞ = ran +∞ei | |
| 10 | 9 | eqcomi 2738 | . . . 4 ⊢ ran +∞ei = ℂ∞ |
| 11 | 10 | eleq2i 2820 | . . 3 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei ↔ (+∞ei‘𝐴) ∈ ℂ∞) |
| 12 | 11 | biimpi 216 | . 2 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei → (+∞ei‘𝐴) ∈ ℂ∞) |
| 13 | 7, 8, 12 | 3syl 18 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4591 dom cdm 5631 ran crn 5632 Fun wfun 6493 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 -cneg 11382 (,]cioc 13283 πcpi 16008 +∞eicinftyexpi 37167 ℂ∞cccinfty 37172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-bj-inftyexpi 37168 df-bj-ccinfty 37173 |
| This theorem is referenced by: bj-pinftyccb 37182 |
| Copyright terms: Public domain | W3C validator |