| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elccinfty | Structured version Visualization version GIF version | ||
| Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-elccinfty | ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-inftyexpi 37241 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
| 2 | 1 | funmpt2 6515 | . . . 4 ⊢ Fun +∞ei |
| 3 | 2 | jctl 523 | . . 3 ⊢ (𝐴 ∈ dom +∞ei → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
| 4 | opex 5399 | . . . . 5 ⊢ 〈𝑥, ℂ〉 ∈ V | |
| 5 | 4, 1 | dmmpti 6620 | . . . 4 ⊢ dom +∞ei = (-π(,]π) |
| 6 | 5 | eqcomi 2740 | . . 3 ⊢ (-π(,]π) = dom +∞ei |
| 7 | 3, 6 | eleq2s 2849 | . 2 ⊢ (𝐴 ∈ (-π(,]π) → (Fun +∞ei ∧ 𝐴 ∈ dom +∞ei)) |
| 8 | fvelrn 7004 | . 2 ⊢ ((Fun +∞ei ∧ 𝐴 ∈ dom +∞ei) → (+∞ei‘𝐴) ∈ ran +∞ei) | |
| 9 | df-bj-ccinfty 37246 | . . . . 5 ⊢ ℂ∞ = ran +∞ei | |
| 10 | 9 | eqcomi 2740 | . . . 4 ⊢ ran +∞ei = ℂ∞ |
| 11 | 10 | eleq2i 2823 | . . 3 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei ↔ (+∞ei‘𝐴) ∈ ℂ∞) |
| 12 | 11 | biimpi 216 | . 2 ⊢ ((+∞ei‘𝐴) ∈ ran +∞ei → (+∞ei‘𝐴) ∈ ℂ∞) |
| 13 | 7, 8, 12 | 3syl 18 | 1 ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 〈cop 4577 dom cdm 5611 ran crn 5612 Fun wfun 6470 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 -cneg 11340 (,]cioc 13241 πcpi 15968 +∞eicinftyexpi 37240 ℂ∞cccinfty 37245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 df-bj-inftyexpi 37241 df-bj-ccinfty 37246 |
| This theorem is referenced by: bj-pinftyccb 37255 |
| Copyright terms: Public domain | W3C validator |