Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elccinfty Structured version   Visualization version   GIF version

Theorem bj-elccinfty 35312
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-elccinfty (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)

Proof of Theorem bj-elccinfty
StepHypRef Expression
1 df-bj-inftyexpi 35305 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
21funmpt2 6457 . . . 4 Fun +∞ei
32jctl 523 . . 3 (𝐴 ∈ dom +∞ei → (Fun +∞ei𝐴 ∈ dom +∞ei))
4 opex 5373 . . . . 5 𝑥, ℂ⟩ ∈ V
54, 1dmmpti 6561 . . . 4 dom +∞ei = (-π(,]π)
65eqcomi 2747 . . 3 (-π(,]π) = dom +∞ei
73, 6eleq2s 2857 . 2 (𝐴 ∈ (-π(,]π) → (Fun +∞ei𝐴 ∈ dom +∞ei))
8 fvelrn 6936 . 2 ((Fun +∞ei𝐴 ∈ dom +∞ei) → (+∞ei𝐴) ∈ ran +∞ei)
9 df-bj-ccinfty 35310 . . . . 5 = ran +∞ei
109eqcomi 2747 . . . 4 ran +∞ei = ℂ
1110eleq2i 2830 . . 3 ((+∞ei𝐴) ∈ ran +∞ei ↔ (+∞ei𝐴) ∈ ℂ)
1211biimpi 215 . 2 ((+∞ei𝐴) ∈ ran +∞ei → (+∞ei𝐴) ∈ ℂ)
137, 8, 123syl 18 1 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cop 4564  dom cdm 5580  ran crn 5581  Fun wfun 6412  cfv 6418  (class class class)co 7255  cc 10800  -cneg 11136  (,]cioc 13009  πcpi 15704  +∞eicinftyexpi 35304  cccinfty 35309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-bj-inftyexpi 35305  df-bj-ccinfty 35310
This theorem is referenced by:  bj-pinftyccb  35319
  Copyright terms: Public domain W3C validator