MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapexOLD Structured version   Visualization version   GIF version

Theorem mapexOLD 8762
Description: Obsolete version of mapex 7877 as of 17-Jun-2025. (Contributed by Raph Levien, 4-Dec-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mapexOLD ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapexOLD
StepHypRef Expression
1 fssxp 6683 . . . 4 (𝑓:𝐴𝐵𝑓 ⊆ (𝐴 × 𝐵))
21ss2abi 4015 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
3 df-pw 4551 . . 3 𝒫 (𝐴 × 𝐵) = {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
42, 3sseqtrri 3980 . 2 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
5 xpexg 7689 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
65pwexd 5319 . 2 ((𝐴𝐶𝐵𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V)
7 ssexg 5263 . 2 (({𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
84, 6, 7sylancr 587 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  {cab 2711  Vcvv 3437  wss 3898  𝒫 cpw 4549   × cxp 5617  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator