MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapexOLD Structured version   Visualization version   GIF version

Theorem mapexOLD 8890
Description: Obsolete version of mapex 7979 as of 17-Jun-2025. (Contributed by Raph Levien, 4-Dec-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
mapexOLD ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapexOLD
StepHypRef Expression
1 fssxp 6775 . . . 4 (𝑓:𝐴𝐵𝑓 ⊆ (𝐴 × 𝐵))
21ss2abi 4090 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
3 df-pw 4624 . . 3 𝒫 (𝐴 × 𝐵) = {𝑓𝑓 ⊆ (𝐴 × 𝐵)}
42, 3sseqtrri 4046 . 2 {𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵)
5 xpexg 7785 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
65pwexd 5397 . 2 ((𝐴𝐶𝐵𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V)
7 ssexg 5341 . 2 (({𝑓𝑓:𝐴𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
84, 6, 7sylancr 586 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  𝒫 cpw 4622   × cxp 5698  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator