![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marypha2lem1 | Structured version Visualization version GIF version |
Description: Lemma for marypha2 9433. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
marypha2lem.t | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
Ref | Expression |
---|---|
marypha2lem1 | ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marypha2lem.t | . 2 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) | |
2 | iunss 5048 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
3 | snssi 4811 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
4 | fvssunirn 6924 | . . . 4 ⊢ (𝐹‘𝑥) ⊆ ∪ ran 𝐹 | |
5 | xpss12 5691 | . . . 4 ⊢ (({𝑥} ⊆ 𝐴 ∧ (𝐹‘𝑥) ⊆ ∪ ran 𝐹) → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
6 | 3, 4, 5 | sylancl 586 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) |
7 | 2, 6 | mprgbir 3068 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) |
8 | 1, 7 | eqsstri 4016 | 1 ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 {csn 4628 ∪ cuni 4908 ∪ ciun 4997 × cxp 5674 ran crn 5677 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-iota 6495 df-fv 6551 |
This theorem is referenced by: marypha2 9433 |
Copyright terms: Public domain | W3C validator |