| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > marypha2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for marypha2 9456. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| marypha2lem.t | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| marypha2lem1 | ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marypha2lem.t | . 2 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) | |
| 2 | iunss 5026 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
| 3 | snssi 4789 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
| 4 | fvssunirn 6914 | . . . 4 ⊢ (𝐹‘𝑥) ⊆ ∪ ran 𝐹 | |
| 5 | xpss12 5674 | . . . 4 ⊢ (({𝑥} ⊆ 𝐴 ∧ (𝐹‘𝑥) ⊆ ∪ ran 𝐹) → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
| 6 | 3, 4, 5 | sylancl 586 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) |
| 7 | 2, 6 | mprgbir 3059 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) |
| 8 | 1, 7 | eqsstri 4010 | 1 ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 ∪ cuni 4888 ∪ ciun 4972 × cxp 5657 ran crn 5660 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: marypha2 9456 |
| Copyright terms: Public domain | W3C validator |