![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marypha2lem1 | Structured version Visualization version GIF version |
Description: Lemma for marypha2 9436. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
marypha2lem.t | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
Ref | Expression |
---|---|
marypha2lem1 | ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marypha2lem.t | . 2 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) | |
2 | iunss 5047 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
3 | snssi 4810 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
4 | fvssunirn 6923 | . . . 4 ⊢ (𝐹‘𝑥) ⊆ ∪ ran 𝐹 | |
5 | xpss12 5690 | . . . 4 ⊢ (({𝑥} ⊆ 𝐴 ∧ (𝐹‘𝑥) ⊆ ∪ ran 𝐹) → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
6 | 3, 4, 5 | sylancl 584 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) |
7 | 2, 6 | mprgbir 3066 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) |
8 | 1, 7 | eqsstri 4015 | 1 ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 {csn 4627 ∪ cuni 4907 ∪ ciun 4996 × cxp 5673 ran crn 5676 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-iota 6494 df-fv 6550 |
This theorem is referenced by: marypha2 9436 |
Copyright terms: Public domain | W3C validator |