MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem1 Structured version   Visualization version   GIF version

Theorem marypha2lem1 9194
Description: Lemma for marypha2 9198. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem1 𝑇 ⊆ (𝐴 × ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem1
StepHypRef Expression
1 marypha2lem.t . 2 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
2 iunss 4975 . . 3 ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹) ↔ ∀𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
3 snssi 4741 . . . 4 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 fvssunirn 6803 . . . 4 (𝐹𝑥) ⊆ ran 𝐹
5 xpss12 5604 . . . 4 (({𝑥} ⊆ 𝐴 ∧ (𝐹𝑥) ⊆ ran 𝐹) → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
63, 4, 5sylancl 586 . . 3 (𝑥𝐴 → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
72, 6mprgbir 3079 . 2 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
81, 7eqsstri 3955 1 𝑇 ⊆ (𝐴 × ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wss 3887  {csn 4561   cuni 4839   ciun 4924   × cxp 5587  ran crn 5590  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-iota 6391  df-fv 6441
This theorem is referenced by:  marypha2  9198
  Copyright terms: Public domain W3C validator