Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > marypha2lem1 | Structured version Visualization version GIF version |
Description: Lemma for marypha2 9128. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
marypha2lem.t | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
Ref | Expression |
---|---|
marypha2lem1 | ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marypha2lem.t | . 2 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) | |
2 | iunss 4971 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
3 | snssi 4738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
4 | fvssunirn 6785 | . . . 4 ⊢ (𝐹‘𝑥) ⊆ ∪ ran 𝐹 | |
5 | xpss12 5595 | . . . 4 ⊢ (({𝑥} ⊆ 𝐴 ∧ (𝐹‘𝑥) ⊆ ∪ ran 𝐹) → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
6 | 3, 4, 5 | sylancl 585 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) |
7 | 2, 6 | mprgbir 3078 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) |
8 | 1, 7 | eqsstri 3951 | 1 ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ∪ ciun 4921 × cxp 5578 ran crn 5581 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 |
This theorem is referenced by: marypha2 9128 |
Copyright terms: Public domain | W3C validator |