MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem1 Structured version   Visualization version   GIF version

Theorem marypha2lem1 9426
Description: Lemma for marypha2 9430. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem1 𝑇 ⊆ (𝐴 × ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem1
StepHypRef Expression
1 marypha2lem.t . 2 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
2 iunss 5038 . . 3 ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹) ↔ ∀𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
3 snssi 4803 . . . 4 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 fvssunirn 6914 . . . 4 (𝐹𝑥) ⊆ ran 𝐹
5 xpss12 5681 . . . 4 (({𝑥} ⊆ 𝐴 ∧ (𝐹𝑥) ⊆ ran 𝐹) → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
63, 4, 5sylancl 585 . . 3 (𝑥𝐴 → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
72, 6mprgbir 3060 . 2 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
81, 7eqsstri 4008 1 𝑇 ⊆ (𝐴 × ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  wss 3940  {csn 4620   cuni 4899   ciun 4987   × cxp 5664  ran crn 5667  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-xp 5672  df-cnv 5674  df-dm 5676  df-rn 5677  df-iota 6485  df-fv 6541
This theorem is referenced by:  marypha2  9430
  Copyright terms: Public domain W3C validator