MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem1 Structured version   Visualization version   GIF version

Theorem marypha2lem1 9124
Description: Lemma for marypha2 9128. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem1 𝑇 ⊆ (𝐴 × ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem1
StepHypRef Expression
1 marypha2lem.t . 2 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
2 iunss 4971 . . 3 ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹) ↔ ∀𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
3 snssi 4738 . . . 4 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 fvssunirn 6785 . . . 4 (𝐹𝑥) ⊆ ran 𝐹
5 xpss12 5595 . . . 4 (({𝑥} ⊆ 𝐴 ∧ (𝐹𝑥) ⊆ ran 𝐹) → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
63, 4, 5sylancl 585 . . 3 (𝑥𝐴 → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
72, 6mprgbir 3078 . 2 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
81, 7eqsstri 3951 1 𝑇 ⊆ (𝐴 × ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wss 3883  {csn 4558   cuni 4836   ciun 4921   × cxp 5578  ran crn 5581  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-iota 6376  df-fv 6426
This theorem is referenced by:  marypha2  9128
  Copyright terms: Public domain W3C validator