Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > marypha2lem1 | Structured version Visualization version GIF version |
Description: Lemma for marypha2 8941. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
marypha2lem.t | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) |
Ref | Expression |
---|---|
marypha2lem1 | ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marypha2lem.t | . 2 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) | |
2 | iunss 4937 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
3 | snssi 4701 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
4 | fvssunirn 6691 | . . . 4 ⊢ (𝐹‘𝑥) ⊆ ∪ ran 𝐹 | |
5 | xpss12 5542 | . . . 4 ⊢ (({𝑥} ⊆ 𝐴 ∧ (𝐹‘𝑥) ⊆ ∪ ran 𝐹) → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) | |
6 | 3, 4, 5 | sylancl 589 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹)) |
7 | 2, 6 | mprgbir 3085 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⊆ (𝐴 × ∪ ran 𝐹) |
8 | 1, 7 | eqsstri 3928 | 1 ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 {csn 4525 ∪ cuni 4801 ∪ ciun 4886 × cxp 5525 ran crn 5528 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-xp 5533 df-cnv 5535 df-dm 5537 df-rn 5538 df-iota 6298 df-fv 6347 |
This theorem is referenced by: marypha2 8941 |
Copyright terms: Public domain | W3C validator |