MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2 Structured version   Visualization version   GIF version

Theorem marypha2 8903
Description: Version of marypha1 8898 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha2.a (𝜑𝐴 ∈ Fin)
marypha2.b (𝜑𝐹:𝐴⟶Fin)
marypha2.c ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
Assertion
Ref Expression
marypha2 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝜑,𝑑,𝑔,𝑥   𝐴,𝑑,𝑔,𝑥   𝐹,𝑑,𝑔,𝑥

Proof of Theorem marypha2
StepHypRef Expression
1 marypha2.a . . 3 (𝜑𝐴 ∈ Fin)
2 marypha2.b . . . 4 (𝜑𝐹:𝐴⟶Fin)
32, 1unirnffid 8816 . . 3 (𝜑 ran 𝐹 ∈ Fin)
4 eqid 2821 . . . . 5 𝑥𝐴 ({𝑥} × (𝐹𝑥)) = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
54marypha2lem1 8899 . . . 4 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
65a1i 11 . . 3 (𝜑 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
7 marypha2.c . . . 4 ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
82ffnd 6515 . . . . 5 (𝜑𝐹 Fn 𝐴)
94marypha2lem4 8902 . . . . 5 ((𝐹 Fn 𝐴𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
108, 9sylan 582 . . . 4 ((𝜑𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
117, 10breqtrrd 5094 . . 3 ((𝜑𝑑𝐴) → 𝑑 ≼ ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑))
121, 3, 6, 11marypha1 8898 . 2 (𝜑 → ∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹)
13 df-rex 3144 . . 3 (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 ↔ ∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹))
14 ssv 3991 . . . . . . . 8 ran 𝐹 ⊆ V
15 f1ss 6580 . . . . . . . 8 ((𝑔:𝐴1-1 ran 𝐹 ran 𝐹 ⊆ V) → 𝑔:𝐴1-1→V)
1614, 15mpan2 689 . . . . . . 7 (𝑔:𝐴1-1 ran 𝐹𝑔:𝐴1-1→V)
1716ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔:𝐴1-1→V)
18 elpwi 4548 . . . . . . . 8 (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
1918ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
20 f1fn 6576 . . . . . . . . 9 (𝑔:𝐴1-1 ran 𝐹𝑔 Fn 𝐴)
2120ad2antll 727 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 Fn 𝐴)
224marypha2lem3 8901 . . . . . . . 8 ((𝐹 Fn 𝐴𝑔 Fn 𝐴) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
238, 21, 22syl2an2r 683 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2419, 23mpbid 234 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
2517, 24jca 514 . . . . 5 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2625ex 415 . . . 4 (𝜑 → ((𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2726eximdv 1918 . . 3 (𝜑 → (∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2813, 27syl5bi 244 . 2 (𝜑 → (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2912, 28mpd 15 1 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  wss 3936  𝒫 cpw 4539  {csn 4567   cuni 4838   ciun 4919   class class class wbr 5066   × cxp 5553  ran crn 5556  cima 5558   Fn wfn 6350  wf 6351  1-1wf1 6352  cfv 6355  cdom 8507  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator