MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2 Structured version   Visualization version   GIF version

Theorem marypha2 9323
Description: Version of marypha1 9318 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha2.a (𝜑𝐴 ∈ Fin)
marypha2.b (𝜑𝐹:𝐴⟶Fin)
marypha2.c ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
Assertion
Ref Expression
marypha2 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝜑,𝑑,𝑔,𝑥   𝐴,𝑑,𝑔,𝑥   𝐹,𝑑,𝑔,𝑥

Proof of Theorem marypha2
StepHypRef Expression
1 marypha2.a . . 3 (𝜑𝐴 ∈ Fin)
2 marypha2.b . . . 4 (𝜑𝐹:𝐴⟶Fin)
32, 1unirnffid 9231 . . 3 (𝜑 ran 𝐹 ∈ Fin)
4 eqid 2731 . . . . 5 𝑥𝐴 ({𝑥} × (𝐹𝑥)) = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
54marypha2lem1 9319 . . . 4 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
65a1i 11 . . 3 (𝜑 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
7 marypha2.c . . . 4 ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
82ffnd 6652 . . . . 5 (𝜑𝐹 Fn 𝐴)
94marypha2lem4 9322 . . . . 5 ((𝐹 Fn 𝐴𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
108, 9sylan 580 . . . 4 ((𝜑𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
117, 10breqtrrd 5117 . . 3 ((𝜑𝑑𝐴) → 𝑑 ≼ ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑))
121, 3, 6, 11marypha1 9318 . 2 (𝜑 → ∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹)
13 df-rex 3057 . . 3 (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 ↔ ∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹))
14 ssv 3954 . . . . . . . 8 ran 𝐹 ⊆ V
15 f1ss 6724 . . . . . . . 8 ((𝑔:𝐴1-1 ran 𝐹 ran 𝐹 ⊆ V) → 𝑔:𝐴1-1→V)
1614, 15mpan2 691 . . . . . . 7 (𝑔:𝐴1-1 ran 𝐹𝑔:𝐴1-1→V)
1716ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔:𝐴1-1→V)
18 elpwi 4554 . . . . . . . 8 (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
1918ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
20 f1fn 6720 . . . . . . . . 9 (𝑔:𝐴1-1 ran 𝐹𝑔 Fn 𝐴)
2120ad2antll 729 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 Fn 𝐴)
224marypha2lem3 9321 . . . . . . . 8 ((𝐹 Fn 𝐴𝑔 Fn 𝐴) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
238, 21, 22syl2an2r 685 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2419, 23mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
2517, 24jca 511 . . . . 5 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2625ex 412 . . . 4 (𝜑 → ((𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2726eximdv 1918 . . 3 (𝜑 → (∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2813, 27biimtrid 242 . 2 (𝜑 → (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2912, 28mpd 15 1 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  𝒫 cpw 4547  {csn 4573   cuni 4856   ciun 4939   class class class wbr 5089   × cxp 5612  ran crn 5615  cima 5617   Fn wfn 6476  wf 6477  1-1wf1 6478  cfv 6481  cdom 8867  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator