MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2 Structured version   Visualization version   GIF version

Theorem marypha2 9456
Description: Version of marypha1 9451 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha2.a (𝜑𝐴 ∈ Fin)
marypha2.b (𝜑𝐹:𝐴⟶Fin)
marypha2.c ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
Assertion
Ref Expression
marypha2 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝜑,𝑑,𝑔,𝑥   𝐴,𝑑,𝑔,𝑥   𝐹,𝑑,𝑔,𝑥

Proof of Theorem marypha2
StepHypRef Expression
1 marypha2.a . . 3 (𝜑𝐴 ∈ Fin)
2 marypha2.b . . . 4 (𝜑𝐹:𝐴⟶Fin)
32, 1unirnffid 9364 . . 3 (𝜑 ran 𝐹 ∈ Fin)
4 eqid 2736 . . . . 5 𝑥𝐴 ({𝑥} × (𝐹𝑥)) = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
54marypha2lem1 9452 . . . 4 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
65a1i 11 . . 3 (𝜑 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
7 marypha2.c . . . 4 ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
82ffnd 6712 . . . . 5 (𝜑𝐹 Fn 𝐴)
94marypha2lem4 9455 . . . . 5 ((𝐹 Fn 𝐴𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
108, 9sylan 580 . . . 4 ((𝜑𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
117, 10breqtrrd 5152 . . 3 ((𝜑𝑑𝐴) → 𝑑 ≼ ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑))
121, 3, 6, 11marypha1 9451 . 2 (𝜑 → ∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹)
13 df-rex 3062 . . 3 (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 ↔ ∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹))
14 ssv 3988 . . . . . . . 8 ran 𝐹 ⊆ V
15 f1ss 6784 . . . . . . . 8 ((𝑔:𝐴1-1 ran 𝐹 ran 𝐹 ⊆ V) → 𝑔:𝐴1-1→V)
1614, 15mpan2 691 . . . . . . 7 (𝑔:𝐴1-1 ran 𝐹𝑔:𝐴1-1→V)
1716ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔:𝐴1-1→V)
18 elpwi 4587 . . . . . . . 8 (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
1918ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
20 f1fn 6780 . . . . . . . . 9 (𝑔:𝐴1-1 ran 𝐹𝑔 Fn 𝐴)
2120ad2antll 729 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 Fn 𝐴)
224marypha2lem3 9454 . . . . . . . 8 ((𝐹 Fn 𝐴𝑔 Fn 𝐴) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
238, 21, 22syl2an2r 685 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2419, 23mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
2517, 24jca 511 . . . . 5 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2625ex 412 . . . 4 (𝜑 → ((𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2726eximdv 1917 . . 3 (𝜑 → (∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2813, 27biimtrid 242 . 2 (𝜑 → (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2912, 28mpd 15 1 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  wss 3931  𝒫 cpw 4580  {csn 4606   cuni 4888   ciun 4972   class class class wbr 5124   × cxp 5657  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  1-1wf1 6533  cfv 6536  cdom 8962  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator