MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2 Structured version   Visualization version   GIF version

Theorem marypha2 9198
Description: Version of marypha1 9193 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha2.a (𝜑𝐴 ∈ Fin)
marypha2.b (𝜑𝐹:𝐴⟶Fin)
marypha2.c ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
Assertion
Ref Expression
marypha2 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝜑,𝑑,𝑔,𝑥   𝐴,𝑑,𝑔,𝑥   𝐹,𝑑,𝑔,𝑥

Proof of Theorem marypha2
StepHypRef Expression
1 marypha2.a . . 3 (𝜑𝐴 ∈ Fin)
2 marypha2.b . . . 4 (𝜑𝐹:𝐴⟶Fin)
32, 1unirnffid 9111 . . 3 (𝜑 ran 𝐹 ∈ Fin)
4 eqid 2738 . . . . 5 𝑥𝐴 ({𝑥} × (𝐹𝑥)) = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
54marypha2lem1 9194 . . . 4 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
65a1i 11 . . 3 (𝜑 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
7 marypha2.c . . . 4 ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
82ffnd 6601 . . . . 5 (𝜑𝐹 Fn 𝐴)
94marypha2lem4 9197 . . . . 5 ((𝐹 Fn 𝐴𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
108, 9sylan 580 . . . 4 ((𝜑𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
117, 10breqtrrd 5102 . . 3 ((𝜑𝑑𝐴) → 𝑑 ≼ ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑))
121, 3, 6, 11marypha1 9193 . 2 (𝜑 → ∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹)
13 df-rex 3070 . . 3 (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 ↔ ∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹))
14 ssv 3945 . . . . . . . 8 ran 𝐹 ⊆ V
15 f1ss 6676 . . . . . . . 8 ((𝑔:𝐴1-1 ran 𝐹 ran 𝐹 ⊆ V) → 𝑔:𝐴1-1→V)
1614, 15mpan2 688 . . . . . . 7 (𝑔:𝐴1-1 ran 𝐹𝑔:𝐴1-1→V)
1716ad2antll 726 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔:𝐴1-1→V)
18 elpwi 4542 . . . . . . . 8 (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
1918ad2antrl 725 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
20 f1fn 6671 . . . . . . . . 9 (𝑔:𝐴1-1 ran 𝐹𝑔 Fn 𝐴)
2120ad2antll 726 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 Fn 𝐴)
224marypha2lem3 9196 . . . . . . . 8 ((𝐹 Fn 𝐴𝑔 Fn 𝐴) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
238, 21, 22syl2an2r 682 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2419, 23mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
2517, 24jca 512 . . . . 5 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2625ex 413 . . . 4 (𝜑 → ((𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2726eximdv 1920 . . 3 (𝜑 → (∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2813, 27syl5bi 241 . 2 (𝜑 → (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2912, 28mpd 15 1 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  𝒫 cpw 4533  {csn 4561   cuni 4839   ciun 4924   class class class wbr 5074   × cxp 5587  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  1-1wf1 6430  cfv 6433  cdom 8731  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator