MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2 Structured version   Visualization version   GIF version

Theorem marypha2 9128
Description: Version of marypha1 9123 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha2.a (𝜑𝐴 ∈ Fin)
marypha2.b (𝜑𝐹:𝐴⟶Fin)
marypha2.c ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
Assertion
Ref Expression
marypha2 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Distinct variable groups:   𝜑,𝑑,𝑔,𝑥   𝐴,𝑑,𝑔,𝑥   𝐹,𝑑,𝑔,𝑥

Proof of Theorem marypha2
StepHypRef Expression
1 marypha2.a . . 3 (𝜑𝐴 ∈ Fin)
2 marypha2.b . . . 4 (𝜑𝐹:𝐴⟶Fin)
32, 1unirnffid 9041 . . 3 (𝜑 ran 𝐹 ∈ Fin)
4 eqid 2738 . . . . 5 𝑥𝐴 ({𝑥} × (𝐹𝑥)) = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
54marypha2lem1 9124 . . . 4 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
65a1i 11 . . 3 (𝜑 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
7 marypha2.c . . . 4 ((𝜑𝑑𝐴) → 𝑑 (𝐹𝑑))
82ffnd 6585 . . . . 5 (𝜑𝐹 Fn 𝐴)
94marypha2lem4 9127 . . . . 5 ((𝐹 Fn 𝐴𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
108, 9sylan 579 . . . 4 ((𝜑𝑑𝐴) → ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑) = (𝐹𝑑))
117, 10breqtrrd 5098 . . 3 ((𝜑𝑑𝐴) → 𝑑 ≼ ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) “ 𝑑))
121, 3, 6, 11marypha1 9123 . 2 (𝜑 → ∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹)
13 df-rex 3069 . . 3 (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 ↔ ∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹))
14 ssv 3941 . . . . . . . 8 ran 𝐹 ⊆ V
15 f1ss 6660 . . . . . . . 8 ((𝑔:𝐴1-1 ran 𝐹 ran 𝐹 ⊆ V) → 𝑔:𝐴1-1→V)
1614, 15mpan2 687 . . . . . . 7 (𝑔:𝐴1-1 ran 𝐹𝑔:𝐴1-1→V)
1716ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔:𝐴1-1→V)
18 elpwi 4539 . . . . . . . 8 (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
1918ad2antrl 724 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)))
20 f1fn 6655 . . . . . . . . 9 (𝑔:𝐴1-1 ran 𝐹𝑔 Fn 𝐴)
2120ad2antll 725 . . . . . . . 8 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → 𝑔 Fn 𝐴)
224marypha2lem3 9126 . . . . . . . 8 ((𝐹 Fn 𝐴𝑔 Fn 𝐴) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
238, 21, 22syl2an2r 681 . . . . . . 7 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2419, 23mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
2517, 24jca 511 . . . . 5 ((𝜑 ∧ (𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹)) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
2625ex 412 . . . 4 (𝜑 → ((𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → (𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2726eximdv 1921 . . 3 (𝜑 → (∃𝑔(𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ∧ 𝑔:𝐴1-1 ran 𝐹) → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2813, 27syl5bi 241 . 2 (𝜑 → (∃𝑔 ∈ 𝒫 𝑥𝐴 ({𝑥} × (𝐹𝑥))𝑔:𝐴1-1 ran 𝐹 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))))
2912, 28mpd 15 1 (𝜑 → ∃𝑔(𝑔:𝐴1-1→V ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   ciun 4921   class class class wbr 5070   × cxp 5578  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  cdom 8689  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator