MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmhmpropd Structured version   Visualization version   GIF version

Theorem mgmhmpropd 18625
Description: Magma homomorphism depends only on the operation of structures. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmhmpropd.a (𝜑𝐵 = (Base‘𝐽))
mgmhmpropd.b (𝜑𝐶 = (Base‘𝐾))
mgmhmpropd.c (𝜑𝐵 = (Base‘𝐿))
mgmhmpropd.d (𝜑𝐶 = (Base‘𝑀))
mgmhmpropd.0 (𝜑𝐵 ≠ ∅)
mgmhmpropd.C (𝜑𝐶 ≠ ∅)
mgmhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
mgmhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
Assertion
Ref Expression
mgmhmpropd (𝜑 → (𝐽 MgmHom 𝐾) = (𝐿 MgmHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐽,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦

Proof of Theorem mgmhmpropd
Dummy variables 𝑤 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmpropd.e . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
21fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐽)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
32adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐽)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
4 ffvelcdm 7053 . . . . . . . . . . . . . . 15 ((𝑓:𝐵𝐶𝑥𝐵) → (𝑓𝑥) ∈ 𝐶)
5 ffvelcdm 7053 . . . . . . . . . . . . . . 15 ((𝑓:𝐵𝐶𝑦𝐵) → (𝑓𝑦) ∈ 𝐶)
64, 5anim12dan 619 . . . . . . . . . . . . . 14 ((𝑓:𝐵𝐶 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓𝑥) ∈ 𝐶 ∧ (𝑓𝑦) ∈ 𝐶))
7 mgmhmpropd.f . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
87ralrimivva 3180 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝐶𝑦𝐶 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
9 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝑥(+g𝐾)𝑦) = (𝑤(+g𝐾)𝑦))
10 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝑥(+g𝑀)𝑦) = (𝑤(+g𝑀)𝑦))
119, 10eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦) ↔ (𝑤(+g𝐾)𝑦) = (𝑤(+g𝑀)𝑦)))
12 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑤(+g𝐾)𝑦) = (𝑤(+g𝐾)𝑧))
13 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑤(+g𝑀)𝑦) = (𝑤(+g𝑀)𝑧))
1412, 13eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝑤(+g𝐾)𝑦) = (𝑤(+g𝑀)𝑦) ↔ (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧)))
1511, 14cbvral2vw 3219 . . . . . . . . . . . . . . 15 (∀𝑥𝐶𝑦𝐶 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦) ↔ ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧))
168, 15sylib 218 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧))
17 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑥) → (𝑤(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝐾)𝑧))
18 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑥) → (𝑤(+g𝑀)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧))
1917, 18eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑥) → ((𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧) ↔ ((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧)))
20 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓𝑦) → ((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)))
21 oveq2 7395 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓𝑦) → ((𝑓𝑥)(+g𝑀)𝑧) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
2220, 21eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑧 = (𝑓𝑦) → (((𝑓𝑥)(+g𝐾)𝑧) = ((𝑓𝑥)(+g𝑀)𝑧) ↔ ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
2319, 22rspc2va 3600 . . . . . . . . . . . . . 14 ((((𝑓𝑥) ∈ 𝐶 ∧ (𝑓𝑦) ∈ 𝐶) ∧ ∀𝑤𝐶𝑧𝐶 (𝑤(+g𝐾)𝑧) = (𝑤(+g𝑀)𝑧)) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
246, 16, 23syl2anr 597 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:𝐵𝐶 ∧ (𝑥𝐵𝑦𝐵))) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
2524anassrs 467 . . . . . . . . . . . 12 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))
263, 25eqeq12d 2745 . . . . . . . . . . 11 (((𝜑𝑓:𝐵𝐶) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
27262ralbidva 3199 . . . . . . . . . 10 ((𝜑𝑓:𝐵𝐶) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
2827adantrl 716 . . . . . . . . 9 ((𝜑 ∧ ((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
29 mgmhmpropd.a . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝐽))
30 raleq 3296 . . . . . . . . . . . 12 (𝐵 = (Base‘𝐽) → (∀𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3130raleqbi1dv 3311 . . . . . . . . . . 11 (𝐵 = (Base‘𝐽) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3229, 31syl 17 . . . . . . . . . 10 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
3332adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))))
34 mgmhmpropd.c . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝐿))
35 raleq 3296 . . . . . . . . . . . 12 (𝐵 = (Base‘𝐿) → (∀𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3635raleqbi1dv 3311 . . . . . . . . . . 11 (𝐵 = (Base‘𝐿) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3734, 36syl 17 . . . . . . . . . 10 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3837adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ 𝑓:𝐵𝐶)) → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
3928, 33, 383bitr3d 309 . . . . . . . 8 ((𝜑 ∧ ((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ 𝑓:𝐵𝐶)) → (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
4039anassrs 467 . . . . . . 7 (((𝜑 ∧ (𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm)) ∧ 𝑓:𝐵𝐶) → (∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))
4140pm5.32da 579 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm)) → ((𝑓:𝐵𝐶 ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))) ↔ (𝑓:𝐵𝐶 ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))))
42 mgmhmpropd.b . . . . . . . . 9 (𝜑𝐶 = (Base‘𝐾))
4329, 42feq23d 6683 . . . . . . . 8 (𝜑 → (𝑓:𝐵𝐶𝑓:(Base‘𝐽)⟶(Base‘𝐾)))
4443adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm)) → (𝑓:𝐵𝐶𝑓:(Base‘𝐽)⟶(Base‘𝐾)))
4544anbi1d 631 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm)) → ((𝑓:𝐵𝐶 ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))) ↔ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)))))
46 mgmhmpropd.d . . . . . . . . 9 (𝜑𝐶 = (Base‘𝑀))
4734, 46feq23d 6683 . . . . . . . 8 (𝜑 → (𝑓:𝐵𝐶𝑓:(Base‘𝐿)⟶(Base‘𝑀)))
4847adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm)) → (𝑓:𝐵𝐶𝑓:(Base‘𝐿)⟶(Base‘𝑀)))
4948anbi1d 631 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm)) → ((𝑓:𝐵𝐶 ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))))
5041, 45, 493bitr3d 309 . . . . 5 ((𝜑 ∧ (𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm)) → ((𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦))) ↔ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))))
5150pm5.32da 579 . . . 4 (𝜑 → (((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)))) ↔ ((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))))
52 mgmhmpropd.0 . . . . . . 7 (𝜑𝐵 ≠ ∅)
5329, 34, 52, 1mgmpropd 18578 . . . . . 6 (𝜑 → (𝐽 ∈ Mgm ↔ 𝐿 ∈ Mgm))
54 mgmhmpropd.C . . . . . . 7 (𝜑𝐶 ≠ ∅)
5542, 46, 54, 7mgmpropd 18578 . . . . . 6 (𝜑 → (𝐾 ∈ Mgm ↔ 𝑀 ∈ Mgm))
5653, 55anbi12d 632 . . . . 5 (𝜑 → ((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ↔ (𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm)))
5756anbi1d 631 . . . 4 (𝜑 → (((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))) ↔ ((𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))))
5851, 57bitrd 279 . . 3 (𝜑 → (((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)))) ↔ ((𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦))))))
59 eqid 2729 . . . 4 (Base‘𝐽) = (Base‘𝐽)
60 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
61 eqid 2729 . . . 4 (+g𝐽) = (+g𝐽)
62 eqid 2729 . . . 4 (+g𝐾) = (+g𝐾)
6359, 60, 61, 62ismgmhm 18623 . . 3 (𝑓 ∈ (𝐽 MgmHom 𝐾) ↔ ((𝐽 ∈ Mgm ∧ 𝐾 ∈ Mgm) ∧ (𝑓:(Base‘𝐽)⟶(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐽)∀𝑦 ∈ (Base‘𝐽)(𝑓‘(𝑥(+g𝐽)𝑦)) = ((𝑓𝑥)(+g𝐾)(𝑓𝑦)))))
64 eqid 2729 . . . 4 (Base‘𝐿) = (Base‘𝐿)
65 eqid 2729 . . . 4 (Base‘𝑀) = (Base‘𝑀)
66 eqid 2729 . . . 4 (+g𝐿) = (+g𝐿)
67 eqid 2729 . . . 4 (+g𝑀) = (+g𝑀)
6864, 65, 66, 67ismgmhm 18623 . . 3 (𝑓 ∈ (𝐿 MgmHom 𝑀) ↔ ((𝐿 ∈ Mgm ∧ 𝑀 ∈ Mgm) ∧ (𝑓:(Base‘𝐿)⟶(Base‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑓‘(𝑥(+g𝐿)𝑦)) = ((𝑓𝑥)(+g𝑀)(𝑓𝑦)))))
6958, 63, 683bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (𝐽 MgmHom 𝐾) ↔ 𝑓 ∈ (𝐿 MgmHom 𝑀)))
7069eqrdv 2727 1 (𝜑 → (𝐽 MgmHom 𝐾) = (𝐿 MgmHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4296  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Mgmcmgm 18565   MgmHom cmgmhm 18617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-mgm 18567  df-mgmhm 18619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator