![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndplusf | Structured version Visualization version GIF version |
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.) |
Ref | Expression |
---|---|
mndplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
mndplusf.2 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
mndplusf | ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18710 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndplusf.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndplusf.2 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
4 | 2, 3 | mgmplusf 18619 | . 2 ⊢ (𝐺 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Mnd → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 × cxp 5680 ⟶wf 6549 ‘cfv 6553 Basecbs 17189 +𝑓cplusf 18606 Mgmcmgm 18607 Mndcmnd 18703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8001 df-2nd 8002 df-plusf 18608 df-mgm 18609 df-sgrp 18688 df-mnd 18704 |
This theorem is referenced by: mndpfo 18726 grpplusf 18919 efmndtmd 24033 submtmd 24036 mhmhmeotmd 33569 |
Copyright terms: Public domain | W3C validator |