Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0mgm Structured version   Visualization version   GIF version

Theorem c0mgm 45467
Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0mgm ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0mgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 18392 . . 3 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
21anim2i 617 . 2 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
3 eqid 2738 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
4 c0mhm.0 . . . . . . 7 0 = (0g𝑇)
53, 4mndidcl 18400 . . . . . 6 (𝑇 ∈ Mnd → 0 ∈ (Base‘𝑇))
65adantl 482 . . . . 5 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 0 ∈ (Base‘𝑇))
76adantr 481 . . . 4 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑇))
8 c0mhm.h . . . 4 𝐻 = (𝑥𝐵0 )
97, 8fmptd 6988 . . 3 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇))
105ancli 549 . . . . . . . 8 (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
1110adantl 482 . . . . . . 7 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
12 eqid 2738 . . . . . . . 8 (+g𝑇) = (+g𝑇)
133, 12, 4mndlid 18405 . . . . . . 7 ((𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)) → ( 0 (+g𝑇) 0 ) = 0 )
1411, 13syl 17 . . . . . 6 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → ( 0 (+g𝑇) 0 ) = 0 )
1514adantr 481 . . . . 5 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ( 0 (+g𝑇) 0 ) = 0 )
168a1i 11 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝐻 = (𝑥𝐵0 ))
17 eqidd 2739 . . . . . . 7 ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 )
18 simprl 768 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
196adantr 481 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 0 ∈ (Base‘𝑇))
2016, 17, 18, 19fvmptd 6882 . . . . . 6 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑎) = 0 )
21 eqidd 2739 . . . . . . 7 ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 )
22 simprr 770 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
2316, 21, 22, 19fvmptd 6882 . . . . . 6 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑏) = 0 )
2420, 23oveq12d 7293 . . . . 5 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) = ( 0 (+g𝑇) 0 ))
25 eqidd 2739 . . . . . 6 ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = (𝑎(+g𝑆)𝑏)) → 0 = 0 )
26 c0mhm.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
27 eqid 2738 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
2826, 27mgmcl 18329 . . . . . . . 8 ((𝑆 ∈ Mgm ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
29283expb 1119 . . . . . . 7 ((𝑆 ∈ Mgm ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
3029adantlr 712 . . . . . 6 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
3116, 25, 30, 19fvmptd 6882 . . . . 5 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = 0 )
3215, 24, 313eqtr4rd 2789 . . . 4 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
3332ralrimivva 3123 . . 3 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
349, 33jca 512 . 2 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏))))
3526, 3, 27, 12ismgmhm 45337 . 2 (𝐻 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))))
362, 34, 35sylanbrc 583 1 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mgmcmgm 18324  Mndcmnd 18385   MgmHom cmgmhm 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mgmhm 45333
This theorem is referenced by:  c0rnghm  45471
  Copyright terms: Public domain W3C validator