| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mndmgm 18754 | . . 3
⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | 
| 2 | 1 | anim2i 617 | . 2
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) | 
| 3 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 4 |  | c0mhm.0 | . . . . . . 7
⊢  0 =
(0g‘𝑇) | 
| 5 | 3, 4 | mndidcl 18762 | . . . . . 6
⊢ (𝑇 ∈ Mnd → 0 ∈
(Base‘𝑇)) | 
| 6 | 5 | adantl 481 | . . . . 5
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 0 ∈
(Base‘𝑇)) | 
| 7 | 6 | adantr 480 | . . . 4
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ 𝑥 ∈ 𝐵) → 0 ∈ (Base‘𝑇)) | 
| 8 |  | c0mhm.h | . . . 4
⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | 
| 9 | 7, 8 | fmptd 7134 | . . 3
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇)) | 
| 10 | 5 | ancli 548 | . . . . . . . 8
⊢ (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇))) | 
| 11 | 10 | adantl 481 | . . . . . . 7
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇))) | 
| 12 |  | eqid 2737 | . . . . . . . 8
⊢
(+g‘𝑇) = (+g‘𝑇) | 
| 13 | 3, 12, 4 | mndlid 18767 | . . . . . . 7
⊢ ((𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇)) → (
0
(+g‘𝑇)
0 ) =
0
) | 
| 14 | 11, 13 | syl 17 | . . . . . 6
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → ( 0
(+g‘𝑇)
0 ) =
0
) | 
| 15 | 14 | adantr 480 | . . . . 5
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ( 0 (+g‘𝑇) 0 ) = 0 ) | 
| 16 | 8 | a1i 11 | . . . . . . 7
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) | 
| 17 |  | eqidd 2738 | . . . . . . 7
⊢ ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 ) | 
| 18 |  | simprl 771 | . . . . . . 7
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | 
| 19 | 6 | adantr 480 | . . . . . . 7
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 0 ∈ (Base‘𝑇)) | 
| 20 | 16, 17, 18, 19 | fvmptd 7023 | . . . . . 6
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘𝑎) = 0 ) | 
| 21 |  | eqidd 2738 | . . . . . . 7
⊢ ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 ) | 
| 22 |  | simprr 773 | . . . . . . 7
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | 
| 23 | 16, 21, 22, 19 | fvmptd 7023 | . . . . . 6
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘𝑏) = 0 ) | 
| 24 | 20, 23 | oveq12d 7449 | . . . . 5
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) = ( 0 (+g‘𝑇) 0 )) | 
| 25 |  | eqidd 2738 | . . . . . 6
⊢ ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = (𝑎(+g‘𝑆)𝑏)) → 0 = 0 ) | 
| 26 |  | c0mhm.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝑆) | 
| 27 |  | eqid 2737 | . . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 28 | 26, 27 | mgmcl 18656 | . . . . . . . 8
⊢ ((𝑆 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) | 
| 29 | 28 | 3expb 1121 | . . . . . . 7
⊢ ((𝑆 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) | 
| 30 | 29 | adantlr 715 | . . . . . 6
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) | 
| 31 | 16, 25, 30, 19 | fvmptd 7023 | . . . . 5
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘(𝑎(+g‘𝑆)𝑏)) = 0 ) | 
| 32 | 15, 24, 31 | 3eqtr4rd 2788 | . . . 4
⊢ (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏))) | 
| 33 | 32 | ralrimivva 3202 | . . 3
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) →
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏))) | 
| 34 | 9, 33 | jca 511 | . 2
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)))) | 
| 35 | 26, 3, 27, 12 | ismgmhm 18709 | . 2
⊢ (𝐻 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏))))) | 
| 36 | 2, 34, 35 | sylanbrc 583 | 1
⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇)) |