MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0mgm Structured version   Visualization version   GIF version

Theorem c0mgm 20375
Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0mgm ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0mgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 18675 . . 3 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
21anim2i 617 . 2 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
3 eqid 2730 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
4 c0mhm.0 . . . . . . 7 0 = (0g𝑇)
53, 4mndidcl 18683 . . . . . 6 (𝑇 ∈ Mnd → 0 ∈ (Base‘𝑇))
65adantl 481 . . . . 5 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 0 ∈ (Base‘𝑇))
76adantr 480 . . . 4 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑇))
8 c0mhm.h . . . 4 𝐻 = (𝑥𝐵0 )
97, 8fmptd 7089 . . 3 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇))
105ancli 548 . . . . . . . 8 (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
1110adantl 481 . . . . . . 7 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
12 eqid 2730 . . . . . . . 8 (+g𝑇) = (+g𝑇)
133, 12, 4mndlid 18688 . . . . . . 7 ((𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)) → ( 0 (+g𝑇) 0 ) = 0 )
1411, 13syl 17 . . . . . 6 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → ( 0 (+g𝑇) 0 ) = 0 )
1514adantr 480 . . . . 5 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ( 0 (+g𝑇) 0 ) = 0 )
168a1i 11 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝐻 = (𝑥𝐵0 ))
17 eqidd 2731 . . . . . . 7 ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 )
18 simprl 770 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
196adantr 480 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 0 ∈ (Base‘𝑇))
2016, 17, 18, 19fvmptd 6978 . . . . . 6 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑎) = 0 )
21 eqidd 2731 . . . . . . 7 ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 )
22 simprr 772 . . . . . . 7 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
2316, 21, 22, 19fvmptd 6978 . . . . . 6 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑏) = 0 )
2420, 23oveq12d 7408 . . . . 5 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) = ( 0 (+g𝑇) 0 ))
25 eqidd 2731 . . . . . 6 ((((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = (𝑎(+g𝑆)𝑏)) → 0 = 0 )
26 c0mhm.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
27 eqid 2730 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
2826, 27mgmcl 18577 . . . . . . . 8 ((𝑆 ∈ Mgm ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
29283expb 1120 . . . . . . 7 ((𝑆 ∈ Mgm ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
3029adantlr 715 . . . . . 6 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
3116, 25, 30, 19fvmptd 6978 . . . . 5 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = 0 )
3215, 24, 313eqtr4rd 2776 . . . 4 (((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
3332ralrimivva 3181 . . 3 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
349, 33jca 511 . 2 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏))))
3526, 3, 27, 12ismgmhm 18630 . 2 (𝐻 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))))
362, 34, 35sylanbrc 583 1 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mgmcmgm 18572   MgmHom cmgmhm 18624  Mndcmnd 18668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-0g 17411  df-mgm 18574  df-mgmhm 18626  df-sgrp 18653  df-mnd 18669
This theorem is referenced by:  c0rnghm  20451
  Copyright terms: Public domain W3C validator