MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmismgmhm Structured version   Visualization version   GIF version

Theorem mhmismgmhm 18823
Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.)
Assertion
Ref Expression
mhmismgmhm (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆))

Proof of Theorem mhmismgmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 18773 . . . 4 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
2 mndmgm 18773 . . . 4 (𝑆 ∈ Mnd → 𝑆 ∈ Mgm)
31, 2anim12i 613 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm))
4 3simpa 1148 . . 3 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆)) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
53, 4anim12i 613 . 2 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆))) → ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
6 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2736 . . 3 (Base‘𝑆) = (Base‘𝑆)
8 eqid 2736 . . 3 (+g𝑅) = (+g𝑅)
9 eqid 2736 . . 3 (+g𝑆) = (+g𝑆)
10 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
11 eqid 2736 . . 3 (0g𝑆) = (0g𝑆)
126, 7, 8, 9, 10, 11ismhm 18817 . 2 (𝐹 ∈ (𝑅 MndHom 𝑆) ↔ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆))))
136, 7, 8, 9ismgmhm 18728 . 2 (𝐹 ∈ (𝑅 MgmHom 𝑆) ↔ ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
145, 12, 133imtr4i 292 1 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1538  wcel 2107  wral 3060  wf 6562  cfv 6566  (class class class)co 7435  Basecbs 17251  +gcplusg 17304  0gc0g 17492  Mgmcmgm 18670   MgmHom cmgmhm 18722  Mndcmnd 18766   MndHom cmhm 18813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-fv 6574  df-ov 7438  df-oprab 7439  df-mpo 7440  df-map 8873  df-mgmhm 18724  df-sgrp 18751  df-mnd 18767  df-mhm 18815
This theorem is referenced by:  rhmisrnghm  20503
  Copyright terms: Public domain W3C validator