Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmismgmhm Structured version   Visualization version   GIF version

Theorem mhmismgmhm 44987
Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.)
Assertion
Ref Expression
mhmismgmhm (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆))

Proof of Theorem mhmismgmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 18152 . . . 4 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
2 mndmgm 18152 . . . 4 (𝑆 ∈ Mnd → 𝑆 ∈ Mgm)
31, 2anim12i 616 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm))
4 3simpa 1150 . . 3 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆)) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
53, 4anim12i 616 . 2 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆))) → ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
6 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2734 . . 3 (Base‘𝑆) = (Base‘𝑆)
8 eqid 2734 . . 3 (+g𝑅) = (+g𝑅)
9 eqid 2734 . . 3 (+g𝑆) = (+g𝑆)
10 eqid 2734 . . 3 (0g𝑅) = (0g𝑅)
11 eqid 2734 . . 3 (0g𝑆) = (0g𝑆)
126, 7, 8, 9, 10, 11ismhm 18192 . 2 (𝐹 ∈ (𝑅 MndHom 𝑆) ↔ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆))))
136, 7, 8, 9ismgmhm 44964 . 2 (𝐹 ∈ (𝑅 MgmHom 𝑆) ↔ ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
145, 12, 133imtr4i 295 1 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  wf 6365  cfv 6369  (class class class)co 7202  Basecbs 16684  +gcplusg 16767  0gc0g 16916  Mgmcmgm 18084  Mndcmnd 18145   MndHom cmhm 18188   MgmHom cmgmhm 44958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-map 8499  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-mgmhm 44960
This theorem is referenced by:  rhmisrnghm  45105
  Copyright terms: Public domain W3C validator