MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmismgmhm Structured version   Visualization version   GIF version

Theorem mhmismgmhm 18694
Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.)
Assertion
Ref Expression
mhmismgmhm (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆))

Proof of Theorem mhmismgmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 18644 . . . 4 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
2 mndmgm 18644 . . . 4 (𝑆 ∈ Mnd → 𝑆 ∈ Mgm)
31, 2anim12i 613 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm))
4 3simpa 1148 . . 3 ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆)) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
53, 4anim12i 613 . 2 (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆))) → ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
6 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
8 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
9 eqid 2729 . . 3 (+g𝑆) = (+g𝑆)
10 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
11 eqid 2729 . . 3 (0g𝑆) = (0g𝑆)
126, 7, 8, 9, 10, 11ismhm 18688 . 2 (𝐹 ∈ (𝑅 MndHom 𝑆) ↔ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(0g𝑅)) = (0g𝑆))))
136, 7, 8, 9ismgmhm 18599 . 2 (𝐹 ∈ (𝑅 MgmHom 𝑆) ↔ ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
145, 12, 133imtr4i 292 1 (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Mgmcmgm 18541   MgmHom cmgmhm 18593  Mndcmnd 18637   MndHom cmhm 18684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-mgmhm 18595  df-sgrp 18622  df-mnd 18638  df-mhm 18686
This theorem is referenced by:  rhmisrnghm  20365
  Copyright terms: Public domain W3C validator