Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhmismgmhm | Structured version Visualization version GIF version |
Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.) |
Ref | Expression |
---|---|
mhmismgmhm | ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18307 | . . . 4 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
2 | mndmgm 18307 | . . . 4 ⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) | |
3 | 1, 2 | anim12i 612 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm)) |
4 | 3simpa 1146 | . . 3 ⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) | |
5 | 3, 4 | anim12i 612 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆))) → ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
6 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | eqid 2738 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
8 | eqid 2738 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | eqid 2738 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
11 | eqid 2738 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
12 | 6, 7, 8, 9, 10, 11 | ismhm 18347 | . 2 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) ↔ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)))) |
13 | 6, 7, 8, 9 | ismgmhm 45225 | . 2 ⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) ↔ ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
14 | 5, 12, 13 | 3imtr4i 291 | 1 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mgmcmgm 18239 Mndcmnd 18300 MndHom cmhm 18343 MgmHom cmgmhm 45219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-mgmhm 45221 |
This theorem is referenced by: rhmisrnghm 45366 |
Copyright terms: Public domain | W3C validator |