| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmismgmhm | Structured version Visualization version GIF version | ||
| Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.) |
| Ref | Expression |
|---|---|
| mhmismgmhm | ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18728 | . . . 4 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
| 2 | mndmgm 18728 | . . . 4 ⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) | |
| 3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm)) |
| 4 | 3simpa 1148 | . . 3 ⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) | |
| 5 | 3, 4 | anim12i 613 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆))) → ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
| 6 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2734 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 8 | eqid 2734 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | eqid 2734 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 10 | eqid 2734 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 11 | eqid 2734 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 12 | 6, 7, 8, 9, 10, 11 | ismhm 18772 | . 2 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) ↔ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)))) |
| 13 | 6, 7, 8, 9 | ismgmhm 18683 | . 2 ⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) ↔ ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
| 14 | 5, 12, 13 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 +gcplusg 17277 0gc0g 17460 Mgmcmgm 18625 MgmHom cmgmhm 18677 Mndcmnd 18721 MndHom cmhm 18768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8851 df-mgmhm 18679 df-sgrp 18706 df-mnd 18722 df-mhm 18770 |
| This theorem is referenced by: rhmisrnghm 20453 |
| Copyright terms: Public domain | W3C validator |