![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmismgmhm | Structured version Visualization version GIF version |
Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.) |
Ref | Expression |
---|---|
mhmismgmhm | ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18773 | . . . 4 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
2 | mndmgm 18773 | . . . 4 ⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) | |
3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm)) |
4 | 3simpa 1148 | . . 3 ⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) | |
5 | 3, 4 | anim12i 613 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆))) → ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
6 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | eqid 2736 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
8 | eqid 2736 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | eqid 2736 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
10 | eqid 2736 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
11 | eqid 2736 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
12 | 6, 7, 8, 9, 10, 11 | ismhm 18817 | . 2 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) ↔ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)))) |
13 | 6, 7, 8, 9 | ismgmhm 18728 | . 2 ⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) ↔ ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
14 | 5, 12, 13 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 Basecbs 17251 +gcplusg 17304 0gc0g 17492 Mgmcmgm 18670 MgmHom cmgmhm 18722 Mndcmnd 18766 MndHom cmhm 18813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-map 8873 df-mgmhm 18724 df-sgrp 18751 df-mnd 18767 df-mhm 18815 |
This theorem is referenced by: rhmisrnghm 20503 |
Copyright terms: Public domain | W3C validator |