| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmismgmhm | Structured version Visualization version GIF version | ||
| Description: Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.) |
| Ref | Expression |
|---|---|
| mhmismgmhm | ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18615 | . . . 4 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
| 2 | mndmgm 18615 | . . . 4 ⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) | |
| 3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm)) |
| 4 | 3simpa 1148 | . . 3 ⊢ ((𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) | |
| 5 | 3, 4 | anim12i 613 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆))) → ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
| 6 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2729 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 8 | eqid 2729 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | eqid 2729 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 10 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 11 | eqid 2729 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 12 | 6, 7, 8, 9, 10, 11 | ismhm 18659 | . 2 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) ↔ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑆)))) |
| 13 | 6, 7, 8, 9 | ismgmhm 18570 | . 2 ⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) ↔ ((𝑅 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
| 14 | 5, 12, 13 | 3imtr4i 292 | 1 ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mgmcmgm 18512 MgmHom cmgmhm 18564 Mndcmnd 18608 MndHom cmhm 18655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-mgmhm 18566 df-sgrp 18593 df-mnd 18609 df-mhm 18657 |
| This theorem is referenced by: rhmisrnghm 20365 |
| Copyright terms: Public domain | W3C validator |