| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > c0snmhm | Structured version Visualization version GIF version | ||
| Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| zrrhm.b | ⊢ 𝐵 = (Base‘𝑇) |
| zrrhm.0 | ⊢ 0 = (0g‘𝑆) |
| zrrhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
| c0snmhm.z | ⊢ 𝑍 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| c0snmhm | ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd) | |
| 4 | mndmgm 18646 | . . . . 5 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
| 5 | 4 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm) |
| 6 | fveq2 6822 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍})) | |
| 7 | c0snmhm.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘𝑇) | |
| 8 | 7 | fvexi 6836 | . . . . . . 7 ⊢ 𝑍 ∈ V |
| 9 | hashsng 14273 | . . . . . . 7 ⊢ (𝑍 ∈ V → (♯‘{𝑍}) = 1) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{𝑍}) = 1 |
| 11 | 6, 10 | eqtrdi 2782 | . . . . 5 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = 1) |
| 12 | 11 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1) |
| 13 | zrrhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
| 14 | zrrhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
| 15 | zrrhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
| 16 | 13, 14, 15 | c0snmgmhm 20378 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
| 17 | 3, 5, 12, 16 | syl3anc 1373 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
| 18 | 15 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
| 19 | eqidd 2732 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 ) | |
| 20 | 8 | snid 4615 | . . . . . 6 ⊢ 𝑍 ∈ {𝑍} |
| 21 | eleq2 2820 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (𝑍 ∈ 𝐵 ↔ 𝑍 ∈ {𝑍})) | |
| 22 | 20, 21 | mpbiri 258 | . . . . 5 ⊢ (𝐵 = {𝑍} → 𝑍 ∈ 𝐵) |
| 23 | 22 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍 ∈ 𝐵) |
| 24 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 25 | 24, 14 | mndidcl 18654 | . . . . 5 ⊢ (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆)) |
| 26 | 25 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆)) |
| 27 | 18, 19, 23, 26 | fvmptd 6936 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻‘𝑍) = 0 ) |
| 28 | 17, 27 | jca 511 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 )) |
| 29 | eqid 2731 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 30 | eqid 2731 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 31 | 13, 24, 29, 30, 7, 14 | ismhm0 18695 | . 2 ⊢ (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 ))) |
| 32 | 2, 28, 31 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 1c1 11004 ♯chash 14234 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Mgmcmgm 18543 MgmHom cmgmhm 18595 Mndcmnd 18639 MndHom cmhm 18686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-hash 14235 df-0g 17342 df-mgm 18545 df-mgmhm 18597 df-sgrp 18624 df-mnd 18640 df-mhm 18688 |
| This theorem is referenced by: c0snghm 20380 |
| Copyright terms: Public domain | W3C validator |