Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0snmhm | Structured version Visualization version GIF version |
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
zrrhm.b | ⊢ 𝐵 = (Base‘𝑇) |
zrrhm.0 | ⊢ 0 = (0g‘𝑆) |
zrrhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
c0snmhm.z | ⊢ 𝑍 = (0g‘𝑇) |
Ref | Expression |
---|---|
c0snmhm | ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 459 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) | |
2 | 1 | 3adant3 1130 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
3 | simp1 1134 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd) | |
4 | mndmgm 18307 | . . . . 5 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
5 | 4 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm) |
6 | fveq2 6756 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍})) | |
7 | c0snmhm.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘𝑇) | |
8 | 7 | fvexi 6770 | . . . . . . 7 ⊢ 𝑍 ∈ V |
9 | hashsng 14012 | . . . . . . 7 ⊢ (𝑍 ∈ V → (♯‘{𝑍}) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{𝑍}) = 1 |
11 | 6, 10 | eqtrdi 2795 | . . . . 5 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = 1) |
12 | 11 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1) |
13 | zrrhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
14 | zrrhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
15 | zrrhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
16 | 13, 14, 15 | c0snmgmhm 45360 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
17 | 3, 5, 12, 16 | syl3anc 1369 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
18 | 15 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
19 | eqidd 2739 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 ) | |
20 | 8 | snid 4594 | . . . . . 6 ⊢ 𝑍 ∈ {𝑍} |
21 | eleq2 2827 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (𝑍 ∈ 𝐵 ↔ 𝑍 ∈ {𝑍})) | |
22 | 20, 21 | mpbiri 257 | . . . . 5 ⊢ (𝐵 = {𝑍} → 𝑍 ∈ 𝐵) |
23 | 22 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍 ∈ 𝐵) |
24 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
25 | 24, 14 | mndidcl 18315 | . . . . 5 ⊢ (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆)) |
26 | 25 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆)) |
27 | 18, 19, 23, 26 | fvmptd 6864 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻‘𝑍) = 0 ) |
28 | 17, 27 | jca 511 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 )) |
29 | eqid 2738 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
30 | eqid 2738 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
31 | 13, 24, 29, 30, 7, 14 | ismhm0 45247 | . 2 ⊢ (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 ))) |
32 | 2, 28, 31 | sylanbrc 582 | 1 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 1c1 10803 ♯chash 13972 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mgmcmgm 18239 Mndcmnd 18300 MndHom cmhm 18343 MgmHom cmgmhm 45219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-mgmhm 45221 |
This theorem is referenced by: c0snghm 45362 |
Copyright terms: Public domain | W3C validator |