![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0snmhm | Structured version Visualization version GIF version |
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
zrrhm.b | ⊢ 𝐵 = (Base‘𝑇) |
zrrhm.0 | ⊢ 0 = (0g‘𝑆) |
zrrhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
c0snmhm.z | ⊢ 𝑍 = (0g‘𝑇) |
Ref | Expression |
---|---|
c0snmhm | ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 461 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) | |
2 | 1 | 3adant3 1133 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
3 | simp1 1137 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd) | |
4 | mndmgm 18571 | . . . . 5 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
5 | 4 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm) |
6 | fveq2 6846 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍})) | |
7 | c0snmhm.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘𝑇) | |
8 | 7 | fvexi 6860 | . . . . . . 7 ⊢ 𝑍 ∈ V |
9 | hashsng 14278 | . . . . . . 7 ⊢ (𝑍 ∈ V → (♯‘{𝑍}) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{𝑍}) = 1 |
11 | 6, 10 | eqtrdi 2789 | . . . . 5 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = 1) |
12 | 11 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1) |
13 | zrrhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
14 | zrrhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
15 | zrrhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
16 | 13, 14, 15 | c0snmgmhm 46302 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
17 | 3, 5, 12, 16 | syl3anc 1372 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
18 | 15 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
19 | eqidd 2734 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 ) | |
20 | 8 | snid 4626 | . . . . . 6 ⊢ 𝑍 ∈ {𝑍} |
21 | eleq2 2823 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (𝑍 ∈ 𝐵 ↔ 𝑍 ∈ {𝑍})) | |
22 | 20, 21 | mpbiri 258 | . . . . 5 ⊢ (𝐵 = {𝑍} → 𝑍 ∈ 𝐵) |
23 | 22 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍 ∈ 𝐵) |
24 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
25 | 24, 14 | mndidcl 18579 | . . . . 5 ⊢ (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆)) |
26 | 25 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆)) |
27 | 18, 19, 23, 26 | fvmptd 6959 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻‘𝑍) = 0 ) |
28 | 17, 27 | jca 513 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 )) |
29 | eqid 2733 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
30 | eqid 2733 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
31 | 13, 24, 29, 30, 7, 14 | ismhm0 46189 | . 2 ⊢ (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 ))) |
32 | 2, 28, 31 | sylanbrc 584 | 1 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3447 {csn 4590 ↦ cmpt 5192 ‘cfv 6500 (class class class)co 7361 1c1 11060 ♯chash 14239 Basecbs 17091 +gcplusg 17141 0gc0g 17329 Mgmcmgm 18503 Mndcmnd 18564 MndHom cmhm 18607 MgmHom cmgmhm 46161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-oadd 8420 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-dju 9845 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-hash 14240 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-mhm 18609 df-mgmhm 46163 |
This theorem is referenced by: c0snghm 46304 |
Copyright terms: Public domain | W3C validator |