Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0snmhm Structured version   Visualization version   GIF version

Theorem c0snmhm 46704
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
c0snmhm.z 𝑍 = (0g𝑇)
Assertion
Ref Expression
c0snmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0   𝑥,𝑍
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmhm
StepHypRef Expression
1 pm3.22 460 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
213adant3 1132 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
3 simp1 1136 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd)
4 mndmgm 18631 . . . . 5 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
543ad2ant2 1134 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm)
6 fveq2 6891 . . . . . 6 (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍}))
7 c0snmhm.z . . . . . . . 8 𝑍 = (0g𝑇)
87fvexi 6905 . . . . . . 7 𝑍 ∈ V
9 hashsng 14328 . . . . . . 7 (𝑍 ∈ V → (♯‘{𝑍}) = 1)
108, 9ax-mp 5 . . . . . 6 (♯‘{𝑍}) = 1
116, 10eqtrdi 2788 . . . . 5 (𝐵 = {𝑍} → (♯‘𝐵) = 1)
12113ad2ant3 1135 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1)
13 zrrhm.b . . . . 5 𝐵 = (Base‘𝑇)
14 zrrhm.0 . . . . 5 0 = (0g𝑆)
15 zrrhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1613, 14, 15c0snmgmhm 46703 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
173, 5, 12, 16syl3anc 1371 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
1815a1i 11 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥𝐵0 ))
19 eqidd 2733 . . . 4 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 )
208snid 4664 . . . . . 6 𝑍 ∈ {𝑍}
21 eleq2 2822 . . . . . 6 (𝐵 = {𝑍} → (𝑍𝐵𝑍 ∈ {𝑍}))
2220, 21mpbiri 257 . . . . 5 (𝐵 = {𝑍} → 𝑍𝐵)
23223ad2ant3 1135 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍𝐵)
24 eqid 2732 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2524, 14mndidcl 18639 . . . . 5 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
26253ad2ant1 1133 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆))
2718, 19, 23, 26fvmptd 7005 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻𝑍) = 0 )
2817, 27jca 512 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 ))
29 eqid 2732 . . 3 (+g𝑇) = (+g𝑇)
30 eqid 2732 . . 3 (+g𝑆) = (+g𝑆)
3113, 24, 29, 30, 7, 14ismhm0 46565 . 2 (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 )))
322, 28, 31sylanbrc 583 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4628  cmpt 5231  cfv 6543  (class class class)co 7408  1c1 11110  chash 14289  Basecbs 17143  +gcplusg 17196  0gc0g 17384  Mgmcmgm 18558  Mndcmnd 18624   MndHom cmhm 18668   MgmHom cmgmhm 46537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-mgmhm 46539
This theorem is referenced by:  c0snghm  46705
  Copyright terms: Public domain W3C validator