MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0snmhm Structured version   Visualization version   GIF version

Theorem c0snmhm 20489
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
c0snmhm.z 𝑍 = (0g𝑇)
Assertion
Ref Expression
c0snmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0   𝑥,𝑍
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmhm
StepHypRef Expression
1 pm3.22 459 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
213adant3 1132 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
3 simp1 1136 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd)
4 mndmgm 18779 . . . . 5 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
543ad2ant2 1134 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm)
6 fveq2 6920 . . . . . 6 (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍}))
7 c0snmhm.z . . . . . . . 8 𝑍 = (0g𝑇)
87fvexi 6934 . . . . . . 7 𝑍 ∈ V
9 hashsng 14418 . . . . . . 7 (𝑍 ∈ V → (♯‘{𝑍}) = 1)
108, 9ax-mp 5 . . . . . 6 (♯‘{𝑍}) = 1
116, 10eqtrdi 2796 . . . . 5 (𝐵 = {𝑍} → (♯‘𝐵) = 1)
12113ad2ant3 1135 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1)
13 zrrhm.b . . . . 5 𝐵 = (Base‘𝑇)
14 zrrhm.0 . . . . 5 0 = (0g𝑆)
15 zrrhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1613, 14, 15c0snmgmhm 20488 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
173, 5, 12, 16syl3anc 1371 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
1815a1i 11 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥𝐵0 ))
19 eqidd 2741 . . . 4 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 )
208snid 4684 . . . . . 6 𝑍 ∈ {𝑍}
21 eleq2 2833 . . . . . 6 (𝐵 = {𝑍} → (𝑍𝐵𝑍 ∈ {𝑍}))
2220, 21mpbiri 258 . . . . 5 (𝐵 = {𝑍} → 𝑍𝐵)
23223ad2ant3 1135 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍𝐵)
24 eqid 2740 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2524, 14mndidcl 18787 . . . . 5 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
26253ad2ant1 1133 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆))
2718, 19, 23, 26fvmptd 7036 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻𝑍) = 0 )
2817, 27jca 511 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 ))
29 eqid 2740 . . 3 (+g𝑇) = (+g𝑇)
30 eqid 2740 . . 3 (+g𝑆) = (+g𝑆)
3113, 24, 29, 30, 7, 14ismhm0 18825 . 2 (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 )))
322, 28, 31sylanbrc 582 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cmpt 5249  cfv 6573  (class class class)co 7448  1c1 11185  chash 14379  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Mgmcmgm 18676   MgmHom cmgmhm 18728  Mndcmnd 18772   MndHom cmhm 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-0g 17501  df-mgm 18678  df-mgmhm 18730  df-sgrp 18757  df-mnd 18773  df-mhm 18818
This theorem is referenced by:  c0snghm  20490
  Copyright terms: Public domain W3C validator