| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > c0snmhm | Structured version Visualization version GIF version | ||
| Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| zrrhm.b | ⊢ 𝐵 = (Base‘𝑇) |
| zrrhm.0 | ⊢ 0 = (0g‘𝑆) |
| zrrhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
| c0snmhm.z | ⊢ 𝑍 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| c0snmhm | ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd) | |
| 4 | mndmgm 18675 | . . . . 5 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
| 5 | 4 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm) |
| 6 | fveq2 6861 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍})) | |
| 7 | c0snmhm.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘𝑇) | |
| 8 | 7 | fvexi 6875 | . . . . . . 7 ⊢ 𝑍 ∈ V |
| 9 | hashsng 14341 | . . . . . . 7 ⊢ (𝑍 ∈ V → (♯‘{𝑍}) = 1) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{𝑍}) = 1 |
| 11 | 6, 10 | eqtrdi 2781 | . . . . 5 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = 1) |
| 12 | 11 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1) |
| 13 | zrrhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
| 14 | zrrhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
| 15 | zrrhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
| 16 | 13, 14, 15 | c0snmgmhm 20378 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
| 17 | 3, 5, 12, 16 | syl3anc 1373 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
| 18 | 15 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
| 19 | eqidd 2731 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 ) | |
| 20 | 8 | snid 4629 | . . . . . 6 ⊢ 𝑍 ∈ {𝑍} |
| 21 | eleq2 2818 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (𝑍 ∈ 𝐵 ↔ 𝑍 ∈ {𝑍})) | |
| 22 | 20, 21 | mpbiri 258 | . . . . 5 ⊢ (𝐵 = {𝑍} → 𝑍 ∈ 𝐵) |
| 23 | 22 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍 ∈ 𝐵) |
| 24 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 25 | 24, 14 | mndidcl 18683 | . . . . 5 ⊢ (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆)) |
| 26 | 25 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆)) |
| 27 | 18, 19, 23, 26 | fvmptd 6978 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻‘𝑍) = 0 ) |
| 28 | 17, 27 | jca 511 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 )) |
| 29 | eqid 2730 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 30 | eqid 2730 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 31 | 13, 24, 29, 30, 7, 14 | ismhm0 18724 | . 2 ⊢ (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 ))) |
| 32 | 2, 28, 31 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 1c1 11076 ♯chash 14302 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mgmcmgm 18572 MgmHom cmgmhm 18624 Mndcmnd 18668 MndHom cmhm 18715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-0g 17411 df-mgm 18574 df-mgmhm 18626 df-sgrp 18653 df-mnd 18669 df-mhm 18717 |
| This theorem is referenced by: c0snghm 20380 |
| Copyright terms: Public domain | W3C validator |