MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0snmhm Structured version   Visualization version   GIF version

Theorem c0snmhm 20379
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
c0snmhm.z 𝑍 = (0g𝑇)
Assertion
Ref Expression
c0snmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0   𝑥,𝑍
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmhm
StepHypRef Expression
1 pm3.22 459 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
213adant3 1132 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
3 simp1 1136 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd)
4 mndmgm 18675 . . . . 5 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
543ad2ant2 1134 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm)
6 fveq2 6861 . . . . . 6 (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍}))
7 c0snmhm.z . . . . . . . 8 𝑍 = (0g𝑇)
87fvexi 6875 . . . . . . 7 𝑍 ∈ V
9 hashsng 14341 . . . . . . 7 (𝑍 ∈ V → (♯‘{𝑍}) = 1)
108, 9ax-mp 5 . . . . . 6 (♯‘{𝑍}) = 1
116, 10eqtrdi 2781 . . . . 5 (𝐵 = {𝑍} → (♯‘𝐵) = 1)
12113ad2ant3 1135 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1)
13 zrrhm.b . . . . 5 𝐵 = (Base‘𝑇)
14 zrrhm.0 . . . . 5 0 = (0g𝑆)
15 zrrhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1613, 14, 15c0snmgmhm 20378 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
173, 5, 12, 16syl3anc 1373 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
1815a1i 11 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥𝐵0 ))
19 eqidd 2731 . . . 4 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 )
208snid 4629 . . . . . 6 𝑍 ∈ {𝑍}
21 eleq2 2818 . . . . . 6 (𝐵 = {𝑍} → (𝑍𝐵𝑍 ∈ {𝑍}))
2220, 21mpbiri 258 . . . . 5 (𝐵 = {𝑍} → 𝑍𝐵)
23223ad2ant3 1135 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍𝐵)
24 eqid 2730 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2524, 14mndidcl 18683 . . . . 5 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
26253ad2ant1 1133 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆))
2718, 19, 23, 26fvmptd 6978 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻𝑍) = 0 )
2817, 27jca 511 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 ))
29 eqid 2730 . . 3 (+g𝑇) = (+g𝑇)
30 eqid 2730 . . 3 (+g𝑆) = (+g𝑆)
3113, 24, 29, 30, 7, 14ismhm0 18724 . 2 (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 )))
322, 28, 31sylanbrc 583 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cmpt 5191  cfv 6514  (class class class)co 7390  1c1 11076  chash 14302  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mgmcmgm 18572   MgmHom cmgmhm 18624  Mndcmnd 18668   MndHom cmhm 18715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-0g 17411  df-mgm 18574  df-mgmhm 18626  df-sgrp 18653  df-mnd 18669  df-mhm 18717
This theorem is referenced by:  c0snghm  20380
  Copyright terms: Public domain W3C validator