![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0snmhm | Structured version Visualization version GIF version |
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
zrrhm.b | ⊢ 𝐵 = (Base‘𝑇) |
zrrhm.0 | ⊢ 0 = (0g‘𝑆) |
zrrhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
c0snmhm.z | ⊢ 𝑍 = (0g‘𝑇) |
Ref | Expression |
---|---|
c0snmhm | ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 460 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) | |
2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
3 | simp1 1136 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd) | |
4 | mndmgm 18631 | . . . . 5 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
5 | 4 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm) |
6 | fveq2 6891 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = (♯‘{𝑍})) | |
7 | c0snmhm.z | . . . . . . . 8 ⊢ 𝑍 = (0g‘𝑇) | |
8 | 7 | fvexi 6905 | . . . . . . 7 ⊢ 𝑍 ∈ V |
9 | hashsng 14328 | . . . . . . 7 ⊢ (𝑍 ∈ V → (♯‘{𝑍}) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{𝑍}) = 1 |
11 | 6, 10 | eqtrdi 2788 | . . . . 5 ⊢ (𝐵 = {𝑍} → (♯‘𝐵) = 1) |
12 | 11 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (♯‘𝐵) = 1) |
13 | zrrhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
14 | zrrhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑆) | |
15 | zrrhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
16 | 13, 14, 15 | c0snmgmhm 46703 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
17 | 3, 5, 12, 16 | syl3anc 1371 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |
18 | 15 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
19 | eqidd 2733 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 ) | |
20 | 8 | snid 4664 | . . . . . 6 ⊢ 𝑍 ∈ {𝑍} |
21 | eleq2 2822 | . . . . . 6 ⊢ (𝐵 = {𝑍} → (𝑍 ∈ 𝐵 ↔ 𝑍 ∈ {𝑍})) | |
22 | 20, 21 | mpbiri 257 | . . . . 5 ⊢ (𝐵 = {𝑍} → 𝑍 ∈ 𝐵) |
23 | 22 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍 ∈ 𝐵) |
24 | eqid 2732 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
25 | 24, 14 | mndidcl 18639 | . . . . 5 ⊢ (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆)) |
26 | 25 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆)) |
27 | 18, 19, 23, 26 | fvmptd 7005 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻‘𝑍) = 0 ) |
28 | 17, 27 | jca 512 | . 2 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 )) |
29 | eqid 2732 | . . 3 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
30 | eqid 2732 | . . 3 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
31 | 13, 24, 29, 30, 7, 14 | ismhm0 46565 | . 2 ⊢ (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻‘𝑍) = 0 ))) |
32 | 2, 28, 31 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7408 1c1 11110 ♯chash 14289 Basecbs 17143 +gcplusg 17196 0gc0g 17384 Mgmcmgm 18558 Mndcmnd 18624 MndHom cmhm 18668 MgmHom cmgmhm 46537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-hash 14290 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-mgmhm 46539 |
This theorem is referenced by: c0snghm 46705 |
Copyright terms: Public domain | W3C validator |