MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayhamlem1 Structured version   Visualization version   GIF version

Theorem cayhamlem1 22015
Description: Lemma 1 for cayleyhamilton 22039. (Contributed by AV, 11-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
cayhamlem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐵,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   × ,𝑖   ,𝑖   𝑖,𝑠   𝑖,𝑏   𝑇,𝑛,𝑖   𝑖,𝑌   × ,𝑛   ,𝑛,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   × (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem cayhamlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cayhamlem1.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cayhamlem1.b . . 3 𝐵 = (Base‘𝐴)
3 cayhamlem1.p . . 3 𝑃 = (Poly1𝑅)
4 cayhamlem1.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cayhamlem1.r . . 3 × = (.r𝑌)
6 cayhamlem1.s . . 3 = (-g𝑌)
7 cayhamlem1.0 . . 3 0 = (0g𝑌)
8 cayhamlem1.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
9 cayhamlem1.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
10 cayhamlem1.e . . 3 = (.g‘(mulGrp‘𝑌))
11 eqid 2738 . . 3 (+g𝑌) = (+g𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chfacfpmmulgsum2 22014 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
13 elfzelz 13256 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℤ)
1413zcnd 12427 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ)
15 pncan1 11399 . . . . . . . . . . . . . 14 (𝑖 ∈ ℂ → ((𝑖 + 1) − 1) = 𝑖)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑠) → ((𝑖 + 1) − 1) = 𝑖)
1716eqcomd 2744 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑠) → 𝑖 = ((𝑖 + 1) − 1))
1817adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 = ((𝑖 + 1) − 1))
1918fveq2d 6778 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏𝑖) = (𝑏‘((𝑖 + 1) − 1)))
2019fveq2d 6778 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
2120oveq2d 7291 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
2221oveq2d 7291 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))) = (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))
2322mpteq2dva 5174 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))))
2423oveq2d 7291 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
2524adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
26 eqid 2738 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
27 crngring 19795 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2827anim2i 617 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
29283adant3 1131 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
303, 4pmatring 21841 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
32 ringabl 19819 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ Abel)
3331, 32syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Abel)
3433adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Abel)
35 elnnuz 12622 . . . . . . 7 (𝑠 ∈ ℕ ↔ 𝑠 ∈ (ℤ‘1))
3635biimpi 215 . . . . . 6 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘1))
3736ad2antrl 725 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ (ℤ‘1))
3831adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
3938adantr 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑌 ∈ Ring)
4028, 30syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
41403adant3 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
42 eqid 2738 . . . . . . . . . . . . 13 (mulGrp‘𝑌) = (mulGrp‘𝑌)
4342ringmgp 19789 . . . . . . . . . . . 12 (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd)
4441, 43syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑌) ∈ Mnd)
4544adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mnd)
4645adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mnd)
47 mndmgm 18392 . . . . . . . . 9 ((mulGrp‘𝑌) ∈ Mnd → (mulGrp‘𝑌) ∈ Mgm)
4846, 47syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mgm)
49 elfznn 13285 . . . . . . . . 9 (𝑘 ∈ (1...(𝑠 + 1)) → 𝑘 ∈ ℕ)
5049adantl 482 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑘 ∈ ℕ)
518, 1, 2, 3, 4mat2pmatbas 21875 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5227, 51syl3an2 1163 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5352adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
5453adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇𝑀) ∈ (Base‘𝑌))
5542, 26mgpbas 19726 . . . . . . . . 9 (Base‘𝑌) = (Base‘(mulGrp‘𝑌))
5655, 10mulgnncl 18719 . . . . . . . 8 (((mulGrp‘𝑌) ∈ Mgm ∧ 𝑘 ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
5748, 50, 54, 56syl3anc 1370 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
58 simpl1 1190 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
5958adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑁 ∈ Fin)
60273ad2ant2 1133 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
6160adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
6261adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑅 ∈ Ring)
63 elmapi 8637 . . . . . . . . . . . 12 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
6463adantl 482 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
6564adantl 482 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
6665adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑏:(0...𝑠)⟶𝐵)
67 nnz 12342 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
68 peano2nn 11985 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6968nnzd 12425 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
70 elfzm1b 13334 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
7167, 69, 70syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
72 nncn 11981 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
73 pncan1 11399 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → ((𝑠 + 1) − 1) = 𝑠)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ → ((𝑠 + 1) − 1) = 𝑠)
7574adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) − 1) = 𝑠)
7675oveq2d 7291 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0...((𝑠 + 1) − 1)) = (0...𝑠))
7776eleq2d 2824 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) ↔ (𝑘 − 1) ∈ (0...𝑠)))
7877biimpd 228 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) → (𝑘 − 1) ∈ (0...𝑠)))
7971, 78sylbid 239 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8079expcom 414 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (𝑘 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠))))
8180com13 88 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 ∈ ℕ → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠))))
8249, 81mpd 15 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠)))
8382com12 32 . . . . . . . . . . 11 (𝑠 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8483ad2antrl 725 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8584imp 407 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 − 1) ∈ (0...𝑠))
8666, 85ffvelrnd 6962 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑏‘(𝑘 − 1)) ∈ 𝐵)
878, 1, 2, 3, 4mat2pmatbas 21875 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑘 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8859, 62, 86, 87syl3anc 1370 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8926, 5ringcl 19800 . . . . . . 7 ((𝑌 ∈ Ring ∧ (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌)) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9039, 57, 88, 89syl3anc 1370 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9190ralrimiva 3103 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑘 ∈ (1...(𝑠 + 1))((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
92 oveq1 7282 . . . . . 6 (𝑘 = 𝑖 → (𝑘 (𝑇𝑀)) = (𝑖 (𝑇𝑀)))
93 fvoveq1 7298 . . . . . . 7 (𝑘 = 𝑖 → (𝑏‘(𝑘 − 1)) = (𝑏‘(𝑖 − 1)))
9493fveq2d 6778 . . . . . 6 (𝑘 = 𝑖 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
9592, 94oveq12d 7293 . . . . 5 (𝑘 = 𝑖 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))))
96 oveq1 7282 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑘 (𝑇𝑀)) = ((𝑖 + 1) (𝑇𝑀)))
97 fvoveq1 7298 . . . . . . 7 (𝑘 = (𝑖 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑖 + 1) − 1)))
9897fveq2d 6778 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
9996, 98oveq12d 7293 . . . . 5 (𝑘 = (𝑖 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
100 oveq1 7282 . . . . . 6 (𝑘 = 1 → (𝑘 (𝑇𝑀)) = (1 (𝑇𝑀)))
101 fvoveq1 7298 . . . . . . 7 (𝑘 = 1 → (𝑏‘(𝑘 − 1)) = (𝑏‘(1 − 1)))
102101fveq2d 6778 . . . . . 6 (𝑘 = 1 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(1 − 1))))
103100, 102oveq12d 7293 . . . . 5 (𝑘 = 1 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))))
104 oveq1 7282 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑘 (𝑇𝑀)) = ((𝑠 + 1) (𝑇𝑀)))
105 fvoveq1 7298 . . . . . . 7 (𝑘 = (𝑠 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑠 + 1) − 1)))
106105fveq2d 6778 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑠 + 1) − 1))))
107104, 106oveq12d 7293 . . . . 5 (𝑘 = (𝑠 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))
10826, 34, 6, 37, 91, 95, 99, 103, 107telgsumfz 19591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
10925, 108eqtrd 2778 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
110109oveq1d 7290 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
11155, 10mulg1 18711 . . . . . . . 8 ((𝑇𝑀) ∈ (Base‘𝑌) → (1 (𝑇𝑀)) = (𝑇𝑀))
11252, 111syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 (𝑇𝑀)) = (𝑇𝑀))
113112adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1 (𝑇𝑀)) = (𝑇𝑀))
114 1cnd 10970 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℂ)
115114subidd 11320 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1 − 1) = 0)
116115fveq2d 6778 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘(1 − 1)) = (𝑏‘0))
117116fveq2d 6778 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘(1 − 1))) = (𝑇‘(𝑏‘0)))
118113, 117oveq12d 7293 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
11972ad2antrl 725 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℂ)
120119, 114pncand 11333 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) − 1) = 𝑠)
121120fveq2d 6778 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘((𝑠 + 1) − 1)) = (𝑏𝑠))
122121fveq2d 6778 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘((𝑠 + 1) − 1))) = (𝑇‘(𝑏𝑠)))
123122oveq2d 7291 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))
124118, 123oveq12d 7293 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))) = (((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠)))))
125124oveq1d 7290 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
126 ringgrp 19788 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
12731, 126syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
128127adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
129 nnnn0 12240 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
130 0elfz 13353 . . . . . . . . 9 (𝑠 ∈ ℕ0 → 0 ∈ (0...𝑠))
131129, 130syl 17 . . . . . . . 8 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
132131ad2antrl 725 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (0...𝑠))
13365, 132ffvelrnd 6962 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
1348, 1, 2, 3, 4mat2pmatbas 21875 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
13558, 61, 133, 134syl3anc 1370 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
13626, 5ringcl 19800 . . . . 5 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
13738, 53, 135, 136syl3anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
13845, 47syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mgm)
139 simprl 768 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ)
140139peano2nnd 11990 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ)
14155, 10mulgnncl 18719 . . . . . 6 (((mulGrp‘𝑌) ∈ Mgm ∧ (𝑠 + 1) ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
142138, 140, 53, 141syl3anc 1370 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
143 nn0fz0 13354 . . . . . . . . 9 (𝑠 ∈ ℕ0𝑠 ∈ (0...𝑠))
144129, 143sylib 217 . . . . . . . 8 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
145144ad2antrl 725 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ (0...𝑠))
14665, 145ffvelrnd 6962 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏𝑠) ∈ 𝐵)
1478, 1, 2, 3, 4mat2pmatbas 21875 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑠) ∈ 𝐵) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
14858, 61, 146, 147syl3anc 1370 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
14926, 5ringcl 19800 . . . . 5 ((𝑌 ∈ Ring ∧ ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌)) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15038, 142, 148, 149syl3anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15126, 11, 6, 7grpnpncan0 18671 . . . 4 ((𝑌 ∈ Grp ∧ (((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
152128, 137, 150, 151syl12anc 834 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
153125, 152eqtrd 2778 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
15412, 110, 1533eqtrd 2782 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ifcif 4459   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151  Mgmcmgm 18324  Mndcmnd 18385  Grpcgrp 18577  -gcsg 18579  .gcmg 18700  Abelcabl 19387  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784  Poly1cpl1 21348   Mat cmat 21554   matToPolyMat cmat2pmat 21853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-ascl 21062  df-psr 21112  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-ply1 21353  df-mamu 21533  df-mat 21555  df-mat2pmat 21856
This theorem is referenced by:  cayleyhamilton0  22038  cayleyhamiltonALT  22040
  Copyright terms: Public domain W3C validator