MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayhamlem1 Structured version   Visualization version   GIF version

Theorem cayhamlem1 22215
Description: Lemma 1 for cayleyhamilton 22239. (Contributed by AV, 11-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
cayhamlem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐵,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   × ,𝑖   ,𝑖   𝑖,𝑠   𝑖,𝑏   𝑇,𝑛,𝑖   𝑖,𝑌   × ,𝑛   ,𝑛,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   × (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem cayhamlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cayhamlem1.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cayhamlem1.b . . 3 𝐵 = (Base‘𝐴)
3 cayhamlem1.p . . 3 𝑃 = (Poly1𝑅)
4 cayhamlem1.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cayhamlem1.r . . 3 × = (.r𝑌)
6 cayhamlem1.s . . 3 = (-g𝑌)
7 cayhamlem1.0 . . 3 0 = (0g𝑌)
8 cayhamlem1.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
9 cayhamlem1.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
10 cayhamlem1.e . . 3 = (.g‘(mulGrp‘𝑌))
11 eqid 2736 . . 3 (+g𝑌) = (+g𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chfacfpmmulgsum2 22214 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
13 elfzelz 13441 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℤ)
1413zcnd 12608 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ)
15 pncan1 11579 . . . . . . . . . . . . . 14 (𝑖 ∈ ℂ → ((𝑖 + 1) − 1) = 𝑖)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑠) → ((𝑖 + 1) − 1) = 𝑖)
1716eqcomd 2742 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑠) → 𝑖 = ((𝑖 + 1) − 1))
1817adantl 482 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 = ((𝑖 + 1) − 1))
1918fveq2d 6846 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏𝑖) = (𝑏‘((𝑖 + 1) − 1)))
2019fveq2d 6846 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
2120oveq2d 7373 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
2221oveq2d 7373 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))) = (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))
2322mpteq2dva 5205 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))))
2423oveq2d 7373 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
2524adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
26 eqid 2736 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
27 crngring 19976 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2827anim2i 617 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
29283adant3 1132 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
303, 4pmatring 22041 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
32 ringabl 20002 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ Abel)
3331, 32syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Abel)
3433adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Abel)
35 elnnuz 12807 . . . . . . 7 (𝑠 ∈ ℕ ↔ 𝑠 ∈ (ℤ‘1))
3635biimpi 215 . . . . . 6 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘1))
3736ad2antrl 726 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ (ℤ‘1))
3831adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
3938adantr 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑌 ∈ Ring)
4028, 30syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
41403adant3 1132 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
42 eqid 2736 . . . . . . . . . . . . 13 (mulGrp‘𝑌) = (mulGrp‘𝑌)
4342ringmgp 19970 . . . . . . . . . . . 12 (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd)
4441, 43syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑌) ∈ Mnd)
4544adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mnd)
4645adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mnd)
47 mndmgm 18563 . . . . . . . . 9 ((mulGrp‘𝑌) ∈ Mnd → (mulGrp‘𝑌) ∈ Mgm)
4846, 47syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mgm)
49 elfznn 13470 . . . . . . . . 9 (𝑘 ∈ (1...(𝑠 + 1)) → 𝑘 ∈ ℕ)
5049adantl 482 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑘 ∈ ℕ)
518, 1, 2, 3, 4mat2pmatbas 22075 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5227, 51syl3an2 1164 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5352adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
5453adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇𝑀) ∈ (Base‘𝑌))
5542, 26mgpbas 19902 . . . . . . . . 9 (Base‘𝑌) = (Base‘(mulGrp‘𝑌))
5655, 10mulgnncl 18891 . . . . . . . 8 (((mulGrp‘𝑌) ∈ Mgm ∧ 𝑘 ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
5748, 50, 54, 56syl3anc 1371 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
58 simpl1 1191 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
5958adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑁 ∈ Fin)
60273ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
6160adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
6261adantr 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑅 ∈ Ring)
63 elmapi 8787 . . . . . . . . . . . 12 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
6463adantl 482 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
6564adantl 482 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
6665adantr 481 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑏:(0...𝑠)⟶𝐵)
67 nnz 12520 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
68 peano2nn 12165 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6968nnzd 12526 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
70 elfzm1b 13519 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
7167, 69, 70syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
72 nncn 12161 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
73 pncan1 11579 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → ((𝑠 + 1) − 1) = 𝑠)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ → ((𝑠 + 1) − 1) = 𝑠)
7574adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) − 1) = 𝑠)
7675oveq2d 7373 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0...((𝑠 + 1) − 1)) = (0...𝑠))
7776eleq2d 2823 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) ↔ (𝑘 − 1) ∈ (0...𝑠)))
7877biimpd 228 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) → (𝑘 − 1) ∈ (0...𝑠)))
7971, 78sylbid 239 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8079expcom 414 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (𝑘 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠))))
8180com13 88 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 ∈ ℕ → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠))))
8249, 81mpd 15 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠)))
8382com12 32 . . . . . . . . . . 11 (𝑠 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8483ad2antrl 726 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8584imp 407 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 − 1) ∈ (0...𝑠))
8666, 85ffvelcdmd 7036 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑏‘(𝑘 − 1)) ∈ 𝐵)
878, 1, 2, 3, 4mat2pmatbas 22075 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑘 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8859, 62, 86, 87syl3anc 1371 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8926, 5ringcl 19981 . . . . . . 7 ((𝑌 ∈ Ring ∧ (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌)) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9039, 57, 88, 89syl3anc 1371 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9190ralrimiva 3143 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑘 ∈ (1...(𝑠 + 1))((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
92 oveq1 7364 . . . . . 6 (𝑘 = 𝑖 → (𝑘 (𝑇𝑀)) = (𝑖 (𝑇𝑀)))
93 fvoveq1 7380 . . . . . . 7 (𝑘 = 𝑖 → (𝑏‘(𝑘 − 1)) = (𝑏‘(𝑖 − 1)))
9493fveq2d 6846 . . . . . 6 (𝑘 = 𝑖 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
9592, 94oveq12d 7375 . . . . 5 (𝑘 = 𝑖 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))))
96 oveq1 7364 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑘 (𝑇𝑀)) = ((𝑖 + 1) (𝑇𝑀)))
97 fvoveq1 7380 . . . . . . 7 (𝑘 = (𝑖 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑖 + 1) − 1)))
9897fveq2d 6846 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
9996, 98oveq12d 7375 . . . . 5 (𝑘 = (𝑖 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
100 oveq1 7364 . . . . . 6 (𝑘 = 1 → (𝑘 (𝑇𝑀)) = (1 (𝑇𝑀)))
101 fvoveq1 7380 . . . . . . 7 (𝑘 = 1 → (𝑏‘(𝑘 − 1)) = (𝑏‘(1 − 1)))
102101fveq2d 6846 . . . . . 6 (𝑘 = 1 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(1 − 1))))
103100, 102oveq12d 7375 . . . . 5 (𝑘 = 1 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))))
104 oveq1 7364 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑘 (𝑇𝑀)) = ((𝑠 + 1) (𝑇𝑀)))
105 fvoveq1 7380 . . . . . . 7 (𝑘 = (𝑠 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑠 + 1) − 1)))
106105fveq2d 6846 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑠 + 1) − 1))))
107104, 106oveq12d 7375 . . . . 5 (𝑘 = (𝑠 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))
10826, 34, 6, 37, 91, 95, 99, 103, 107telgsumfz 19767 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
10925, 108eqtrd 2776 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
110109oveq1d 7372 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
11155, 10mulg1 18883 . . . . . . . 8 ((𝑇𝑀) ∈ (Base‘𝑌) → (1 (𝑇𝑀)) = (𝑇𝑀))
11252, 111syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 (𝑇𝑀)) = (𝑇𝑀))
113112adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1 (𝑇𝑀)) = (𝑇𝑀))
114 1cnd 11150 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℂ)
115114subidd 11500 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1 − 1) = 0)
116115fveq2d 6846 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘(1 − 1)) = (𝑏‘0))
117116fveq2d 6846 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘(1 − 1))) = (𝑇‘(𝑏‘0)))
118113, 117oveq12d 7375 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
11972ad2antrl 726 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℂ)
120119, 114pncand 11513 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) − 1) = 𝑠)
121120fveq2d 6846 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘((𝑠 + 1) − 1)) = (𝑏𝑠))
122121fveq2d 6846 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘((𝑠 + 1) − 1))) = (𝑇‘(𝑏𝑠)))
123122oveq2d 7373 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))
124118, 123oveq12d 7375 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))) = (((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠)))))
125124oveq1d 7372 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
126 ringgrp 19969 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
12731, 126syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
128127adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
129 nnnn0 12420 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
130 0elfz 13538 . . . . . . . . 9 (𝑠 ∈ ℕ0 → 0 ∈ (0...𝑠))
131129, 130syl 17 . . . . . . . 8 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
132131ad2antrl 726 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (0...𝑠))
13365, 132ffvelcdmd 7036 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
1348, 1, 2, 3, 4mat2pmatbas 22075 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
13558, 61, 133, 134syl3anc 1371 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
13626, 5ringcl 19981 . . . . 5 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
13738, 53, 135, 136syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
13845, 47syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mgm)
139 simprl 769 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ)
140139peano2nnd 12170 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ)
14155, 10mulgnncl 18891 . . . . . 6 (((mulGrp‘𝑌) ∈ Mgm ∧ (𝑠 + 1) ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
142138, 140, 53, 141syl3anc 1371 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
143 nn0fz0 13539 . . . . . . . . 9 (𝑠 ∈ ℕ0𝑠 ∈ (0...𝑠))
144129, 143sylib 217 . . . . . . . 8 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
145144ad2antrl 726 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ (0...𝑠))
14665, 145ffvelcdmd 7036 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏𝑠) ∈ 𝐵)
1478, 1, 2, 3, 4mat2pmatbas 22075 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑠) ∈ 𝐵) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
14858, 61, 146, 147syl3anc 1371 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
14926, 5ringcl 19981 . . . . 5 ((𝑌 ∈ Ring ∧ ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌)) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15038, 142, 148, 149syl3anc 1371 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15126, 11, 6, 7grpnpncan0 18843 . . . 4 ((𝑌 ∈ Grp ∧ (((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
152128, 137, 150, 151syl12anc 835 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
153125, 152eqtrd 2776 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
15412, 110, 1533eqtrd 2780 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cmin 11385  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  Mgmcmgm 18495  Mndcmnd 18556  Grpcgrp 18748  -gcsg 18750  .gcmg 18872  Abelcabl 19563  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965  Poly1cpl1 21548   Mat cmat 21754   matToPolyMat cmat2pmat 22053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-ascl 21261  df-psr 21311  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-ply1 21553  df-mamu 21733  df-mat 21755  df-mat2pmat 22056
This theorem is referenced by:  cayleyhamilton0  22238  cayleyhamiltonALT  22240
  Copyright terms: Public domain W3C validator