MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayhamlem1 Structured version   Visualization version   GIF version

Theorem cayhamlem1 21473
Description: Lemma 1 for cayleyhamilton 21497. (Contributed by AV, 11-Nov-2019.)
Hypotheses
Ref Expression
cayhamlem1.a 𝐴 = (𝑁 Mat 𝑅)
cayhamlem1.b 𝐵 = (Base‘𝐴)
cayhamlem1.p 𝑃 = (Poly1𝑅)
cayhamlem1.y 𝑌 = (𝑁 Mat 𝑃)
cayhamlem1.r × = (.r𝑌)
cayhamlem1.s = (-g𝑌)
cayhamlem1.0 0 = (0g𝑌)
cayhamlem1.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cayhamlem1.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cayhamlem1.e = (.g‘(mulGrp‘𝑌))
Assertion
Ref Expression
cayhamlem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   0 ,𝑛   𝐵,𝑖   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑇,𝑖   × ,𝑖   ,𝑖   𝑖,𝑠   𝑖,𝑏   𝑇,𝑛,𝑖   𝑖,𝑌   × ,𝑛   ,𝑛,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   × (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem cayhamlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cayhamlem1.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cayhamlem1.b . . 3 𝐵 = (Base‘𝐴)
3 cayhamlem1.p . . 3 𝑃 = (Poly1𝑅)
4 cayhamlem1.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cayhamlem1.r . . 3 × = (.r𝑌)
6 cayhamlem1.s . . 3 = (-g𝑌)
7 cayhamlem1.0 . . 3 0 = (0g𝑌)
8 cayhamlem1.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
9 cayhamlem1.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
10 cayhamlem1.e . . 3 = (.g‘(mulGrp‘𝑌))
11 eqid 2821 . . 3 (+g𝑌) = (+g𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chfacfpmmulgsum2 21472 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
13 elfzelz 12907 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℤ)
1413zcnd 12087 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ)
15 pncan1 11063 . . . . . . . . . . . . . 14 (𝑖 ∈ ℂ → ((𝑖 + 1) − 1) = 𝑖)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑠) → ((𝑖 + 1) − 1) = 𝑖)
1716eqcomd 2827 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑠) → 𝑖 = ((𝑖 + 1) − 1))
1817adantl 484 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 = ((𝑖 + 1) − 1))
1918fveq2d 6673 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏𝑖) = (𝑏‘((𝑖 + 1) − 1)))
2019fveq2d 6673 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏𝑖)) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
2120oveq2d 7171 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
2221oveq2d 7171 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))) = (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))
2322mpteq2dva 5160 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))))
2423oveq2d 7171 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
2524adantr 483 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))))
26 eqid 2821 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
27 crngring 19307 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2827anim2i 618 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
29283adant3 1128 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
303, 4pmatring 21300 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
32 ringabl 19329 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ Abel)
3331, 32syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Abel)
3433adantr 483 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Abel)
35 elnnuz 12281 . . . . . . 7 (𝑠 ∈ ℕ ↔ 𝑠 ∈ (ℤ‘1))
3635biimpi 218 . . . . . 6 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘1))
3736ad2antrl 726 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ (ℤ‘1))
3831adantr 483 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
3938adantr 483 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑌 ∈ Ring)
4028, 30syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
41403adant3 1128 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
42 eqid 2821 . . . . . . . . . . . . 13 (mulGrp‘𝑌) = (mulGrp‘𝑌)
4342ringmgp 19302 . . . . . . . . . . . 12 (𝑌 ∈ Ring → (mulGrp‘𝑌) ∈ Mnd)
4441, 43syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑌) ∈ Mnd)
4544adantr 483 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mnd)
4645adantr 483 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mnd)
47 mndmgm 17917 . . . . . . . . 9 ((mulGrp‘𝑌) ∈ Mnd → (mulGrp‘𝑌) ∈ Mgm)
4846, 47syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (mulGrp‘𝑌) ∈ Mgm)
49 elfznn 12935 . . . . . . . . 9 (𝑘 ∈ (1...(𝑠 + 1)) → 𝑘 ∈ ℕ)
5049adantl 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑘 ∈ ℕ)
518, 1, 2, 3, 4mat2pmatbas 21333 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5227, 51syl3an2 1160 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
5352adantr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
5453adantr 483 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇𝑀) ∈ (Base‘𝑌))
5542, 26mgpbas 19244 . . . . . . . . 9 (Base‘𝑌) = (Base‘(mulGrp‘𝑌))
5655, 10mulgnncl 18242 . . . . . . . 8 (((mulGrp‘𝑌) ∈ Mgm ∧ 𝑘 ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
5748, 50, 54, 56syl3anc 1367 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌))
58 simpl1 1187 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
5958adantr 483 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑁 ∈ Fin)
60273ad2ant2 1130 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
6160adantr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
6261adantr 483 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑅 ∈ Ring)
63 elmapi 8427 . . . . . . . . . . . 12 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
6463adantl 484 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
6564adantl 484 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
6665adantr 483 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → 𝑏:(0...𝑠)⟶𝐵)
67 nnz 12003 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
68 peano2nn 11649 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6968nnzd 12085 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
70 elfzm1b 12984 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ (𝑠 + 1) ∈ ℤ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
7167, 69, 70syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) ↔ (𝑘 − 1) ∈ (0...((𝑠 + 1) − 1))))
72 nncn 11645 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
73 pncan1 11063 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → ((𝑠 + 1) − 1) = 𝑠)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ → ((𝑠 + 1) − 1) = 𝑠)
7574adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑠 + 1) − 1) = 𝑠)
7675oveq2d 7171 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (0...((𝑠 + 1) − 1)) = (0...𝑠))
7776eleq2d 2898 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) ↔ (𝑘 − 1) ∈ (0...𝑠)))
7877biimpd 231 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑘 − 1) ∈ (0...((𝑠 + 1) − 1)) → (𝑘 − 1) ∈ (0...𝑠)))
7971, 78sylbid 242 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8079expcom 416 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (𝑘 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠))))
8180com13 88 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 ∈ ℕ → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠))))
8249, 81mpd 15 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑠 + 1)) → (𝑠 ∈ ℕ → (𝑘 − 1) ∈ (0...𝑠)))
8382com12 32 . . . . . . . . . . 11 (𝑠 ∈ ℕ → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8483ad2antrl 726 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑘 ∈ (1...(𝑠 + 1)) → (𝑘 − 1) ∈ (0...𝑠)))
8584imp 409 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑘 − 1) ∈ (0...𝑠))
8666, 85ffvelrnd 6851 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑏‘(𝑘 − 1)) ∈ 𝐵)
878, 1, 2, 3, 4mat2pmatbas 21333 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑘 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8859, 62, 86, 87syl3anc 1367 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌))
8926, 5ringcl 19310 . . . . . . 7 ((𝑌 ∈ Ring ∧ (𝑘 (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘(𝑘 − 1))) ∈ (Base‘𝑌)) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9039, 57, 88, 89syl3anc 1367 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑘 ∈ (1...(𝑠 + 1))) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
9190ralrimiva 3182 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑘 ∈ (1...(𝑠 + 1))((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) ∈ (Base‘𝑌))
92 oveq1 7162 . . . . . 6 (𝑘 = 𝑖 → (𝑘 (𝑇𝑀)) = (𝑖 (𝑇𝑀)))
93 fvoveq1 7178 . . . . . . 7 (𝑘 = 𝑖 → (𝑏‘(𝑘 − 1)) = (𝑏‘(𝑖 − 1)))
9493fveq2d 6673 . . . . . 6 (𝑘 = 𝑖 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
9592, 94oveq12d 7173 . . . . 5 (𝑘 = 𝑖 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))))
96 oveq1 7162 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑘 (𝑇𝑀)) = ((𝑖 + 1) (𝑇𝑀)))
97 fvoveq1 7178 . . . . . . 7 (𝑘 = (𝑖 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑖 + 1) − 1)))
9897fveq2d 6673 . . . . . 6 (𝑘 = (𝑖 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑖 + 1) − 1))))
9996, 98oveq12d 7173 . . . . 5 (𝑘 = (𝑖 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1)))))
100 oveq1 7162 . . . . . 6 (𝑘 = 1 → (𝑘 (𝑇𝑀)) = (1 (𝑇𝑀)))
101 fvoveq1 7178 . . . . . . 7 (𝑘 = 1 → (𝑏‘(𝑘 − 1)) = (𝑏‘(1 − 1)))
102101fveq2d 6673 . . . . . 6 (𝑘 = 1 → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘(1 − 1))))
103100, 102oveq12d 7173 . . . . 5 (𝑘 = 1 → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))))
104 oveq1 7162 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑘 (𝑇𝑀)) = ((𝑠 + 1) (𝑇𝑀)))
105 fvoveq1 7178 . . . . . . 7 (𝑘 = (𝑠 + 1) → (𝑏‘(𝑘 − 1)) = (𝑏‘((𝑠 + 1) − 1)))
106105fveq2d 6673 . . . . . 6 (𝑘 = (𝑠 + 1) → (𝑇‘(𝑏‘(𝑘 − 1))) = (𝑇‘(𝑏‘((𝑠 + 1) − 1))))
107104, 106oveq12d 7173 . . . . 5 (𝑘 = (𝑠 + 1) → ((𝑘 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑘 − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))
10826, 34, 6, 37, 91, 95, 99, 103, 107telgsumfz 19109 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑖 + 1) − 1))))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
10925, 108eqtrd 2856 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖)))))) = (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))))
110109oveq1d 7170 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 (𝑇𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) (((𝑖 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑖))))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
11155, 10mulg1 18234 . . . . . . . 8 ((𝑇𝑀) ∈ (Base‘𝑌) → (1 (𝑇𝑀)) = (𝑇𝑀))
11252, 111syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 (𝑇𝑀)) = (𝑇𝑀))
113112adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1 (𝑇𝑀)) = (𝑇𝑀))
114 1cnd 10635 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℂ)
115114subidd 10984 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1 − 1) = 0)
116115fveq2d 6673 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘(1 − 1)) = (𝑏‘0))
117116fveq2d 6673 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘(1 − 1))) = (𝑇‘(𝑏‘0)))
118113, 117oveq12d 7173 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) = ((𝑇𝑀) × (𝑇‘(𝑏‘0))))
11972ad2antrl 726 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℂ)
120119, 114pncand 10997 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) − 1) = 𝑠)
121120fveq2d 6673 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘((𝑠 + 1) − 1)) = (𝑏𝑠))
122121fveq2d 6673 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘((𝑠 + 1) − 1))) = (𝑇‘(𝑏𝑠)))
123122oveq2d 7171 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))) = (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))
124118, 123oveq12d 7173 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1))))) = (((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠)))))
125124oveq1d 7170 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
126 ringgrp 19301 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
12731, 126syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
128127adantr 483 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
129 nnnn0 11903 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
130 0elfz 13003 . . . . . . . . 9 (𝑠 ∈ ℕ0 → 0 ∈ (0...𝑠))
131129, 130syl 17 . . . . . . . 8 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
132131ad2antrl 726 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (0...𝑠))
13365, 132ffvelrnd 6851 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
1348, 1, 2, 3, 4mat2pmatbas 21333 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
13558, 61, 133, 134syl3anc 1367 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
13626, 5ringcl 19310 . . . . 5 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
13738, 53, 135, 136syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
13845, 47syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (mulGrp‘𝑌) ∈ Mgm)
139 simprl 769 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ)
140139peano2nnd 11654 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ)
14155, 10mulgnncl 18242 . . . . . 6 (((mulGrp‘𝑌) ∈ Mgm ∧ (𝑠 + 1) ∈ ℕ ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
142138, 140, 53, 141syl3anc 1367 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌))
143 nn0fz0 13004 . . . . . . . . 9 (𝑠 ∈ ℕ0𝑠 ∈ (0...𝑠))
144129, 143sylib 220 . . . . . . . 8 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
145144ad2antrl 726 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ (0...𝑠))
14665, 145ffvelrnd 6851 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏𝑠) ∈ 𝐵)
1478, 1, 2, 3, 4mat2pmatbas 21333 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑠) ∈ 𝐵) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
14858, 61, 146, 147syl3anc 1367 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
14926, 5ringcl 19310 . . . . 5 ((𝑌 ∈ Ring ∧ ((𝑠 + 1) (𝑇𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌)) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15038, 142, 148, 149syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
15126, 11, 6, 7grpnpncan0 18194 . . . 4 ((𝑌 ∈ Grp ∧ (((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
152128, 137, 150, 151syl12anc 834 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑇𝑀) × (𝑇‘(𝑏‘0))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
153125, 152eqtrd 2856 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((1 (𝑇𝑀)) × (𝑇‘(𝑏‘(1 − 1)))) (((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏‘((𝑠 + 1) − 1)))))(+g𝑌)((((𝑠 + 1) (𝑇𝑀)) × (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = 0 )
15412, 110, 1533eqtrd 2860 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 (𝑇𝑀)) × (𝐺𝑖)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  ifcif 4466   class class class wbr 5065  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  Fincfn 8508  cc 10534  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cmin 10869  cn 11637  0cn0 11896  cz 11980  cuz 12242  ...cfz 12891  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  0gc0g 16712   Σg cgsu 16713  Mgmcmgm 17849  Mndcmnd 17910  Grpcgrp 18102  -gcsg 18104  .gcmg 18223  Abelcabl 18906  mulGrpcmgp 19238  Ringcrg 19296  CRingccrg 19297  Poly1cpl1 20344   Mat cmat 21015   matToPolyMat cmat2pmat 21311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-ofr 7409  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-0g 16714  df-gsum 16715  df-prds 16720  df-pws 16722  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-subrg 19532  df-lmod 19635  df-lss 19703  df-sra 19943  df-rgmod 19944  df-ascl 20086  df-psr 20135  df-mpl 20137  df-opsr 20139  df-psr1 20347  df-ply1 20349  df-dsmm 20875  df-frlm 20890  df-mamu 20994  df-mat 21016  df-mat2pmat 21314
This theorem is referenced by:  cayleyhamilton0  21496  cayleyhamiltonALT  21498
  Copyright terms: Public domain W3C validator