Proof of Theorem chfacfpmmulgsum2
Step | Hyp | Ref
| Expression |
1 | | cayhamlem1.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | cayhamlem1.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
3 | | cayhamlem1.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
4 | | cayhamlem1.y |
. . 3
⊢ 𝑌 = (𝑁 Mat 𝑃) |
5 | | cayhamlem1.r |
. . 3
⊢ × =
(.r‘𝑌) |
6 | | cayhamlem1.s |
. . 3
⊢ − =
(-g‘𝑌) |
7 | | cayhamlem1.0 |
. . 3
⊢ 0 =
(0g‘𝑌) |
8 | | cayhamlem1.t |
. . 3
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
9 | | cayhamlem1.g |
. . 3
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
10 | | cayhamlem1.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑌)) |
11 | | chfacfpmmulgsum.p |
. . 3
⊢ + =
(+g‘𝑌) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | chfacfpmmulgsum 21921 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
13 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑌) =
(Base‘𝑌) |
14 | | crngring 19710 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
15 | 14 | anim2i 616 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
16 | 3, 4 | pmatring 21749 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
18 | 17 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
19 | 18 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring) |
20 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑌) =
(mulGrp‘𝑌) |
21 | 20 | ringmgp 19704 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring →
(mulGrp‘𝑌) ∈
Mnd) |
22 | | mndmgm 18307 |
. . . . . . . . . . 11
⊢
((mulGrp‘𝑌)
∈ Mnd → (mulGrp‘𝑌) ∈ Mgm) |
23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝑌 ∈ Ring →
(mulGrp‘𝑌) ∈
Mgm) |
24 | 18, 23 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑌) ∈ Mgm) |
25 | 24 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (mulGrp‘𝑌) ∈ Mgm) |
26 | | elfznn 13214 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ) |
27 | 26 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ) |
28 | 8, 1, 2, 3, 4 | mat2pmatbas 21783 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
29 | 14, 28 | syl3an2 1162 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
30 | 29 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
31 | 20, 13 | mgpbas 19641 |
. . . . . . . . 9
⊢
(Base‘𝑌) =
(Base‘(mulGrp‘𝑌)) |
32 | 31, 10 | mulgnncl 18634 |
. . . . . . . 8
⊢
(((mulGrp‘𝑌)
∈ Mgm ∧ 𝑖 ∈
ℕ ∧ (𝑇‘𝑀) ∈ (Base‘𝑌)) → (𝑖 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
33 | 25, 27, 30, 32 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
34 | 15 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
35 | 34 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
36 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
37 | 36 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵) |
38 | 37 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵) |
39 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
40 | | 1nn0 12179 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ0 |
41 | 40 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 1 ∈
ℕ0) |
42 | | nnnn0 12170 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℕ0) |
43 | 42 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑠 ∈ ℕ0) |
44 | | nnge1 11931 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → 1 ≤
𝑠) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 1 ≤ 𝑠) |
46 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(0...𝑠) ↔ (1 ∈
ℕ0 ∧ 𝑠
∈ ℕ0 ∧ 1 ≤ 𝑠)) |
47 | 41, 43, 45, 46 | syl3anbrc 1341 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 1 ∈ (0...𝑠)) |
48 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ (1...𝑠)) |
49 | | fz0fzdiffz0 13294 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ (0...𝑠) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
50 | 47, 48, 49 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
51 | 50 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
52 | 51 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
53 | 52 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
54 | 39, 53 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘(𝑖 − 1)) ∈ 𝐵) |
55 | | df-3an 1087 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵)) |
56 | 35, 54, 55 | sylanbrc 582 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵)) |
57 | 8, 1, 2, 3, 4 | mat2pmatbas 21783 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
58 | 56, 57 | syl 17 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
59 | 34, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
60 | 59 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring) |
61 | | simpl1 1189 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑁 ∈ Fin) |
62 | 14 | 3ad2ant2 1132 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
63 | 62 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) |
64 | 42 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑠 ∈ ℕ0) |
65 | 61, 63, 64 | 3jca 1126 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈
ℕ0)) |
66 | 65 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈
ℕ0)) |
67 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) |
68 | 67 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) |
69 | | fz1ssfz0 13281 |
. . . . . . . . . . 11
⊢
(1...𝑠) ⊆
(0...𝑠) |
70 | 69 | sseli 3913 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠)) |
71 | 68, 70 | anim12i 612 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
72 | 1, 2, 3, 4, 8 | m2pmfzmap 21804 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
73 | 66, 71, 72 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
74 | 13, 5 | ringcl 19715 |
. . . . . . . 8
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
75 | 60, 30, 73, 74 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
76 | 13, 5, 6, 19, 33, 58, 75 | ringsubdi 19753 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) |
77 | 13, 5 | ringass 19718 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Ring ∧ ((𝑖 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌))) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))) = ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) |
78 | 60, 33, 30, 73, 77 | syl13anc 1370 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))) = ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) |
79 | 78 | eqcomd 2744 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))) |
80 | 29, 31 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘(mulGrp‘𝑌))) |
81 | 80 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑇‘𝑀) ∈ (Base‘(mulGrp‘𝑌))) |
82 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)) |
83 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘(mulGrp‘𝑌)) =
(+g‘(mulGrp‘𝑌)) |
84 | 82, 10, 83 | mulgnnp1 18627 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℕ ∧ (𝑇‘𝑀) ∈ (Base‘(mulGrp‘𝑌))) → ((𝑖 + 1) ↑ (𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀))(+g‘(mulGrp‘𝑌))(𝑇‘𝑀))) |
85 | 26, 81, 84 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 + 1) ↑ (𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀))(+g‘(mulGrp‘𝑌))(𝑇‘𝑀))) |
86 | 20, 5 | mgpplusg 19639 |
. . . . . . . . . . . . . 14
⊢ × =
(+g‘(mulGrp‘𝑌)) |
87 | 86 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢
(+g‘(mulGrp‘𝑌)) = × |
88 | 87 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) →
(+g‘(mulGrp‘𝑌)) = × ) |
89 | 88 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀))(+g‘(mulGrp‘𝑌))(𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀))) |
90 | 85, 89 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 + 1) ↑ (𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀))) |
91 | 90 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) = ((𝑖 + 1) ↑ (𝑇‘𝑀))) |
92 | 91 | oveq1d 7270 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))) = (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))) |
93 | 79, 92 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))) |
94 | 93 | oveq2d 7271 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))))) |
95 | 76, 94 | eqtrd 2778 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))))) |
96 | 95 | mpteq2dva 5170 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) |
97 | 96 | oveq2d 7271 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))))))) |
98 | 97 | oveq1d 7270 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
99 | 12, 98 | eqtrd 2778 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |