Proof of Theorem chfacfpmmulgsum2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cayhamlem1.a | . . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 2 |  | cayhamlem1.b | . . 3
⊢ 𝐵 = (Base‘𝐴) | 
| 3 |  | cayhamlem1.p | . . 3
⊢ 𝑃 = (Poly1‘𝑅) | 
| 4 |  | cayhamlem1.y | . . 3
⊢ 𝑌 = (𝑁 Mat 𝑃) | 
| 5 |  | cayhamlem1.r | . . 3
⊢  × =
(.r‘𝑌) | 
| 6 |  | cayhamlem1.s | . . 3
⊢  − =
(-g‘𝑌) | 
| 7 |  | cayhamlem1.0 | . . 3
⊢  0 =
(0g‘𝑌) | 
| 8 |  | cayhamlem1.t | . . 3
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | 
| 9 |  | cayhamlem1.g | . . 3
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) | 
| 10 |  | cayhamlem1.e | . . 3
⊢  ↑ =
(.g‘(mulGrp‘𝑌)) | 
| 11 |  | chfacfpmmulgsum.p | . . 3
⊢  + =
(+g‘𝑌) | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | chfacfpmmulgsum 22870 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | 
| 13 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘𝑌) =
(Base‘𝑌) | 
| 14 |  | crngring 20242 | . . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | 
| 15 | 14 | anim2i 617 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | 
| 16 | 3, 4 | pmatring 22698 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) | 
| 17 | 15, 16 | syl 17 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) | 
| 18 | 17 | 3adant3 1133 | . . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) | 
| 19 | 18 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring) | 
| 20 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(mulGrp‘𝑌) =
(mulGrp‘𝑌) | 
| 21 | 20 | ringmgp 20236 | . . . . . . . . . . 11
⊢ (𝑌 ∈ Ring →
(mulGrp‘𝑌) ∈
Mnd) | 
| 22 |  | mndmgm 18754 | . . . . . . . . . . 11
⊢
((mulGrp‘𝑌)
∈ Mnd → (mulGrp‘𝑌) ∈ Mgm) | 
| 23 | 21, 22 | syl 17 | . . . . . . . . . 10
⊢ (𝑌 ∈ Ring →
(mulGrp‘𝑌) ∈
Mgm) | 
| 24 | 18, 23 | syl 17 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑌) ∈ Mgm) | 
| 25 | 24 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (mulGrp‘𝑌) ∈ Mgm) | 
| 26 |  | elfznn 13593 | . . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ) | 
| 27 | 26 | adantl 481 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ) | 
| 28 | 8, 1, 2, 3, 4 | mat2pmatbas 22732 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) | 
| 29 | 14, 28 | syl3an2 1165 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) | 
| 30 | 29 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) | 
| 31 | 20, 13 | mgpbas 20142 | . . . . . . . . 9
⊢
(Base‘𝑌) =
(Base‘(mulGrp‘𝑌)) | 
| 32 | 31, 10 | mulgnncl 19107 | . . . . . . . 8
⊢
(((mulGrp‘𝑌)
∈ Mgm ∧ 𝑖 ∈
ℕ ∧ (𝑇‘𝑀) ∈ (Base‘𝑌)) → (𝑖 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) | 
| 33 | 25, 27, 30, 32 | syl3anc 1373 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌)) | 
| 34 | 15 | 3adant3 1133 | . . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | 
| 35 | 34 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | 
| 36 |  | elmapi 8889 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) | 
| 37 | 36 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵) | 
| 38 | 37 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵) | 
| 39 | 38 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) | 
| 40 |  | 1nn0 12542 | . . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ0 | 
| 41 | 40 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 1 ∈
ℕ0) | 
| 42 |  | nnnn0 12533 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℕ0) | 
| 43 | 42 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑠 ∈ ℕ0) | 
| 44 |  | nnge1 12294 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → 1 ≤
𝑠) | 
| 45 | 44 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 1 ≤ 𝑠) | 
| 46 |  | elfz2nn0 13658 | . . . . . . . . . . . . . . 15
⊢ (1 ∈
(0...𝑠) ↔ (1 ∈
ℕ0 ∧ 𝑠
∈ ℕ0 ∧ 1 ≤ 𝑠)) | 
| 47 | 41, 43, 45, 46 | syl3anbrc 1344 | . . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 1 ∈ (0...𝑠)) | 
| 48 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ (1...𝑠)) | 
| 49 |  | fz0fzdiffz0 13677 | . . . . . . . . . . . . . 14
⊢ ((1
∈ (0...𝑠) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) | 
| 50 | 47, 48, 49 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) | 
| 51 | 50 | ex 412 | . . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) | 
| 52 | 51 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) | 
| 53 | 52 | imp 406 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) | 
| 54 | 39, 53 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘(𝑖 − 1)) ∈ 𝐵) | 
| 55 |  | df-3an 1089 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵)) | 
| 56 | 35, 54, 55 | sylanbrc 583 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵)) | 
| 57 | 8, 1, 2, 3, 4 | mat2pmatbas 22732 | . . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) | 
| 58 | 56, 57 | syl 17 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) | 
| 59 | 34, 16 | syl 17 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) | 
| 60 | 59 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring) | 
| 61 |  | simpl1 1192 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑁 ∈ Fin) | 
| 62 | 14 | 3ad2ant2 1135 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) | 
| 63 | 62 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) | 
| 64 | 42 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑠 ∈ ℕ0) | 
| 65 | 61, 63, 64 | 3jca 1129 | . . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈
ℕ0)) | 
| 66 | 65 | adantr 480 | . . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈
ℕ0)) | 
| 67 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) | 
| 68 | 67 | adantl 481 | . . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) | 
| 69 |  | fz1ssfz0 13663 | . . . . . . . . . . 11
⊢
(1...𝑠) ⊆
(0...𝑠) | 
| 70 | 69 | sseli 3979 | . . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠)) | 
| 71 | 68, 70 | anim12i 613 | . . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) | 
| 72 | 1, 2, 3, 4, 8 | m2pmfzmap 22753 | . . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) | 
| 73 | 66, 71, 72 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) | 
| 74 | 13, 5 | ringcl 20247 | . . . . . . . 8
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) | 
| 75 | 60, 30, 73, 74 | syl3anc 1373 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) | 
| 76 | 13, 5, 6, 19, 33, 58, 75 | ringsubdi 20304 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) | 
| 77 | 13, 5 | ringass 20250 | . . . . . . . . . 10
⊢ ((𝑌 ∈ Ring ∧ ((𝑖 ↑ (𝑇‘𝑀)) ∈ (Base‘𝑌) ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌))) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))) = ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) | 
| 78 | 60, 33, 30, 73, 77 | syl13anc 1374 | . . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))) = ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) | 
| 79 | 78 | eqcomd 2743 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))) | 
| 80 | 29, 31 | eleqtrdi 2851 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘(mulGrp‘𝑌))) | 
| 81 | 80 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑇‘𝑀) ∈ (Base‘(mulGrp‘𝑌))) | 
| 82 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)) | 
| 83 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(+g‘(mulGrp‘𝑌)) =
(+g‘(mulGrp‘𝑌)) | 
| 84 | 82, 10, 83 | mulgnnp1 19100 | . . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℕ ∧ (𝑇‘𝑀) ∈ (Base‘(mulGrp‘𝑌))) → ((𝑖 + 1) ↑ (𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀))(+g‘(mulGrp‘𝑌))(𝑇‘𝑀))) | 
| 85 | 26, 81, 84 | syl2anr 597 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 + 1) ↑ (𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀))(+g‘(mulGrp‘𝑌))(𝑇‘𝑀))) | 
| 86 | 20, 5 | mgpplusg 20141 | . . . . . . . . . . . . . 14
⊢  × =
(+g‘(mulGrp‘𝑌)) | 
| 87 | 86 | eqcomi 2746 | . . . . . . . . . . . . 13
⊢
(+g‘(mulGrp‘𝑌)) = × | 
| 88 | 87 | a1i 11 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) →
(+g‘(mulGrp‘𝑌)) = × ) | 
| 89 | 88 | oveqd 7448 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀))(+g‘(mulGrp‘𝑌))(𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀))) | 
| 90 | 85, 89 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 + 1) ↑ (𝑇‘𝑀)) = ((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀))) | 
| 91 | 90 | eqcomd 2743 | . . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) = ((𝑖 + 1) ↑ (𝑇‘𝑀))) | 
| 92 | 91 | oveq1d 7446 | . . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))) = (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))) | 
| 93 | 79, 92 | eqtrd 2777 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))) | 
| 94 | 93 | oveq2d 7447 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))))) | 
| 95 | 76, 94 | eqtrd 2777 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))))) | 
| 96 | 95 | mpteq2dva 5242 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) | 
| 97 | 96 | oveq2d 7447 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖))))))) | 
| 98 | 97 | oveq1d 7446 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | 
| 99 | 12, 98 | eqtrd 2777 | 1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |