Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismhm0 | Structured version Visualization version GIF version |
Description: Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
ismhm0.b | ⊢ 𝐵 = (Base‘𝑆) |
ismhm0.c | ⊢ 𝐶 = (Base‘𝑇) |
ismhm0.p | ⊢ + = (+g‘𝑆) |
ismhm0.q | ⊢ ⨣ = (+g‘𝑇) |
ismhm0.z | ⊢ 0 = (0g‘𝑆) |
ismhm0.y | ⊢ 𝑌 = (0g‘𝑇) |
Ref | Expression |
---|---|
ismhm0 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismhm0.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
2 | ismhm0.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
3 | ismhm0.p | . . 3 ⊢ + = (+g‘𝑆) | |
4 | ismhm0.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
5 | ismhm0.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
6 | ismhm0.y | . . 3 ⊢ 𝑌 = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 18347 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
8 | df-3an 1087 | . . . 4 ⊢ ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌) ↔ ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ∧ (𝐹‘ 0 ) = 𝑌)) | |
9 | mndmgm 18307 | . . . . . . . 8 ⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) | |
10 | mndmgm 18307 | . . . . . . . 8 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
11 | 9, 10 | anim12i 612 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
12 | 11 | biantrurd 532 | . . . . . 6 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))))) |
13 | 1, 2, 3, 4 | ismgmhm 45225 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
14 | 12, 13 | bitr4di 288 | . . . . 5 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑇))) |
15 | 14 | anbi1d 629 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ∧ (𝐹‘ 0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
16 | 8, 15 | syl5bb 282 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
17 | 16 | pm5.32i 574 | . 2 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
18 | 7, 17 | bitri 274 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mgmcmgm 18239 Mndcmnd 18300 MndHom cmhm 18343 MgmHom cmgmhm 45219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-mgmhm 45221 |
This theorem is referenced by: c0snmhm 45361 |
Copyright terms: Public domain | W3C validator |