![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismhm0 | Structured version Visualization version GIF version |
Description: Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
ismhm0.b | ⊢ 𝐵 = (Base‘𝑆) |
ismhm0.c | ⊢ 𝐶 = (Base‘𝑇) |
ismhm0.p | ⊢ + = (+g‘𝑆) |
ismhm0.q | ⊢ ⨣ = (+g‘𝑇) |
ismhm0.z | ⊢ 0 = (0g‘𝑆) |
ismhm0.y | ⊢ 𝑌 = (0g‘𝑇) |
Ref | Expression |
---|---|
ismhm0 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismhm0.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
2 | ismhm0.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
3 | ismhm0.p | . . 3 ⊢ + = (+g‘𝑆) | |
4 | ismhm0.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
5 | ismhm0.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
6 | ismhm0.y | . . 3 ⊢ 𝑌 = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 18817 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
8 | df-3an 1088 | . . . 4 ⊢ ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌) ↔ ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ∧ (𝐹‘ 0 ) = 𝑌)) | |
9 | mndmgm 18773 | . . . . . . . 8 ⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) | |
10 | mndmgm 18773 | . . . . . . . 8 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
11 | 9, 10 | anim12i 613 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
12 | 11 | biantrurd 532 | . . . . . 6 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))))) |
13 | 1, 2, 3, 4 | ismgmhm 18728 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
14 | 12, 13 | bitr4di 289 | . . . . 5 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑇))) |
15 | 14 | anbi1d 631 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ∧ (𝐹‘ 0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
16 | 8, 15 | bitrid 283 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
17 | 16 | pm5.32i 574 | . 2 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
18 | 7, 17 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 Basecbs 17251 +gcplusg 17304 0gc0g 17492 Mgmcmgm 18670 MgmHom cmgmhm 18722 Mndcmnd 18766 MndHom cmhm 18813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-map 8873 df-mgmhm 18724 df-sgrp 18751 df-mnd 18767 df-mhm 18815 |
This theorem is referenced by: c0snmhm 20486 |
Copyright terms: Public domain | W3C validator |