Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismhm0 Structured version   Visualization version   GIF version

Theorem ismhm0 46565
Description: Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
ismhm0.b 𝐵 = (Base‘𝑆)
ismhm0.c 𝐶 = (Base‘𝑇)
ismhm0.p + = (+g𝑆)
ismhm0.q = (+g𝑇)
ismhm0.z 0 = (0g𝑆)
ismhm0.y 𝑌 = (0g𝑇)
Assertion
Ref Expression
ismhm0 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹0 ) = 𝑌)))

Proof of Theorem ismhm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismhm0.b . . 3 𝐵 = (Base‘𝑆)
2 ismhm0.c . . 3 𝐶 = (Base‘𝑇)
3 ismhm0.p . . 3 + = (+g𝑆)
4 ismhm0.q . . 3 = (+g𝑇)
5 ismhm0.z . . 3 0 = (0g𝑆)
6 ismhm0.y . . 3 𝑌 = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18672 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
8 df-3an 1089 . . . 4 ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌) ↔ ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ∧ (𝐹0 ) = 𝑌))
9 mndmgm 18631 . . . . . . . 8 (𝑆 ∈ Mnd → 𝑆 ∈ Mgm)
10 mndmgm 18631 . . . . . . . 8 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
119, 10anim12i 613 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
1211biantrurd 533 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))))
131, 2, 3, 4ismgmhm 46543 . . . . . 6 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
1412, 13bitr4di 288 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑇)))
1514anbi1d 630 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ∧ (𝐹0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹0 ) = 𝑌)))
168, 15bitrid 282 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹0 ) = 𝑌)))
1716pm5.32i 575 . 2 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹0 ) = 𝑌)))
187, 17bitri 274 1 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹0 ) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wf 6539  cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  0gc0g 17384  Mgmcmgm 18558  Mndcmnd 18624   MndHom cmhm 18668   MgmHom cmgmhm 46537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-mgmhm 46539
This theorem is referenced by:  c0snmhm  46704
  Copyright terms: Public domain W3C validator