| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismhm0 | Structured version Visualization version GIF version | ||
| Description: Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| ismhm0.b | ⊢ 𝐵 = (Base‘𝑆) |
| ismhm0.c | ⊢ 𝐶 = (Base‘𝑇) |
| ismhm0.p | ⊢ + = (+g‘𝑆) |
| ismhm0.q | ⊢ ⨣ = (+g‘𝑇) |
| ismhm0.z | ⊢ 0 = (0g‘𝑆) |
| ismhm0.y | ⊢ 𝑌 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| ismhm0 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismhm0.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | ismhm0.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 3 | ismhm0.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 4 | ismhm0.q | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | ismhm0.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 6 | ismhm0.y | . . 3 ⊢ 𝑌 = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18772 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
| 8 | df-3an 1088 | . . . 4 ⊢ ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌) ↔ ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ∧ (𝐹‘ 0 ) = 𝑌)) | |
| 9 | mndmgm 18728 | . . . . . . . 8 ⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) | |
| 10 | mndmgm 18728 | . . . . . . . 8 ⊢ (𝑇 ∈ Mnd → 𝑇 ∈ Mgm) | |
| 11 | 9, 10 | anim12i 613 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 12 | 11 | biantrurd 532 | . . . . . 6 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))))) |
| 13 | 1, 2, 3, 4 | ismgmhm 18683 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
| 14 | 12, 13 | bitr4di 289 | . . . . 5 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑇))) |
| 15 | 14 | anbi1d 631 | . . . 4 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ∧ (𝐹‘ 0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
| 16 | 8, 15 | bitrid 283 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌) ↔ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
| 17 | 16 | pm5.32i 574 | . 2 ⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
| 18 | 7, 17 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 +gcplusg 17277 0gc0g 17460 Mgmcmgm 18625 MgmHom cmgmhm 18677 Mndcmnd 18721 MndHom cmhm 18768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8851 df-mgmhm 18679 df-sgrp 18706 df-mnd 18722 df-mhm 18770 |
| This theorem is referenced by: c0snmhm 20436 |
| Copyright terms: Public domain | W3C validator |