| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprabexd | Structured version Visualization version GIF version | ||
| Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by AV, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| oprabexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| oprabexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| oprabexd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) |
| oprabexd.4 | ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) |
| Ref | Expression |
|---|---|
| oprabexd | ⊢ (𝜑 → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabexd.4 | . 2 ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) | |
| 2 | oprabexd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) | |
| 3 | 2 | ex 412 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜓)) |
| 4 | moanimv 2613 | . . . . . 6 ⊢ (∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜓)) | |
| 5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)) |
| 6 | 5 | alrimivv 1928 | . . . 4 ⊢ (𝜑 → ∀𝑥∀𝑦∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)) |
| 7 | funoprabg 7513 | . . . 4 ⊢ (∀𝑥∀𝑦∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) |
| 9 | dmoprabss 7496 | . . . 4 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) | |
| 10 | oprabexd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | oprabexd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 12 | 10, 11 | xpexd 7730 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 13 | ssexg 5281 | . . . 4 ⊢ ((dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V) → dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) | |
| 14 | 9, 12, 13 | sylancr 587 | . . 3 ⊢ (𝜑 → dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) |
| 15 | funex 7196 | . . 3 ⊢ ((Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∧ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) | |
| 16 | 8, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} ∈ V) |
| 17 | 1, 16 | eqeltrd 2829 | 1 ⊢ (𝜑 → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 Vcvv 3450 ⊆ wss 3917 × cxp 5639 dom cdm 5641 Fun wfun 6508 {coprab 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-oprab 7394 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |