![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovidi | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovidi.2 | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) |
ovidi.3 | ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} |
Ref | Expression |
---|---|
ovidi | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovidi.2 | . . . 4 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) | |
2 | moanimv 2607 | . . . 4 ⊢ (∃*𝑧((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) ↔ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑)) | |
3 | 1, 2 | mpbir 230 | . . 3 ⊢ ∃*𝑧((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) |
4 | ovidi.3 | . . 3 ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} | |
5 | 3, 4 | ovidig 7543 | . 2 ⊢ (((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) → (𝑥𝐹𝑦) = 𝑧) |
6 | 5 | ex 412 | 1 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃*wmo 2524 (class class class)co 7402 {coprab 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-ov 7405 df-oprab 7406 |
This theorem is referenced by: ovmpt4g 7548 ov3 7564 |
Copyright terms: Public domain | W3C validator |