![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovidi | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovidi.2 | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) |
ovidi.3 | ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} |
Ref | Expression |
---|---|
ovidi | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovidi.2 | . . . 4 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) | |
2 | moanimv 2615 | . . . 4 ⊢ (∃*𝑧((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) ↔ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑)) | |
3 | 1, 2 | mpbir 230 | . . 3 ⊢ ∃*𝑧((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) |
4 | ovidi.3 | . . 3 ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} | |
5 | 3, 4 | ovidig 7546 | . 2 ⊢ (((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) → (𝑥𝐹𝑦) = 𝑧) |
6 | 5 | ex 413 | 1 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃*wmo 2532 (class class class)co 7405 {coprab 7406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 |
This theorem is referenced by: ovmpt4g 7551 ov3 7566 |
Copyright terms: Public domain | W3C validator |