MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovidi Structured version   Visualization version   GIF version

Theorem ovidi 7039
Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidi.2 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
ovidi.3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovidi ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovidi
StepHypRef Expression
1 ovidi.2 . . . 4 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
2 moanimv 2707 . . . 4 (∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑))
31, 2mpbir 223 . . 3 ∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑)
4 ovidi.3 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
53, 4ovidig 7038 . 2 (((𝑥𝑅𝑦𝑆) ∧ 𝜑) → (𝑥𝐹𝑦) = 𝑧)
65ex 403 1 ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  ∃*wmo 2603  (class class class)co 6905  {coprab 6906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fv 6131  df-ov 6908  df-oprab 6909
This theorem is referenced by:  ovmpt4g  7043  ov3  7057
  Copyright terms: Public domain W3C validator