MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabex Structured version   Visualization version   GIF version

Theorem oprabex 7908
Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex.1 𝐴 ∈ V
oprabex.2 𝐵 ∈ V
oprabex.3 ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑)
oprabex.4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
Assertion
Ref Expression
oprabex 𝐹 ∈ V
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem oprabex
StepHypRef Expression
1 oprabex.4 . 2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 oprabex.3 . . . . 5 ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑)
3 moanimv 2614 . . . . 5 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑))
42, 3mpbir 231 . . . 4 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)
54funoprab 7468 . . 3 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
6 oprabex.1 . . . . 5 𝐴 ∈ V
7 oprabex.2 . . . . 5 𝐵 ∈ V
86, 7xpex 7686 . . . 4 (𝐴 × 𝐵) ∈ V
9 dmoprabss 7450 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
108, 9ssexi 5258 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V
11 funex 7153 . . 3 ((Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V)
125, 10, 11mp2an 692 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V
131, 12eqeltri 2827 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ∃*wmo 2533  Vcvv 3436   × cxp 5612  dom cdm 5614  Fun wfun 6475  {coprab 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-oprab 7350
This theorem is referenced by:  oprabex3  7909  joinfval  18277  meetfval  18291
  Copyright terms: Public domain W3C validator