MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfun Structured version   Visualization version   GIF version

Theorem cnextfun 22667
Description: If the target space is Hausdorff, a continuous extension is a function. (Contributed by Thierry Arnoux, 20-Dec-2017.)
Hypotheses
Ref Expression
cnextfrel.1 𝐶 = 𝐽
cnextfrel.2 𝐵 = 𝐾
Assertion
Ref Expression
cnextfun (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))

Proof of Theorem cnextfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 21934 . . 3 (𝐾 ∈ Haus → 𝐾 ∈ Top)
2 cnextfrel.1 . . . 4 𝐶 = 𝐽
3 cnextfrel.2 . . . 4 𝐵 = 𝐾
42, 3cnextrel 22666 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
51, 4sylanl2 680 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
6 simpllr 775 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐾 ∈ Haus)
72toptopon 21520 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
87biimpi 219 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝐶))
98ad3antrrr 729 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ (TopOn‘𝐶))
10 simplrr 777 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐴𝐶)
119, 7sylibr 237 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ Top)
122clsss3 21662 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝐶) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
1311, 10, 12syl2anc 587 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
14 simpr 488 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
1513, 14sseldd 3943 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
16 trnei 22495 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
1716biimpa 480 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
189, 10, 15, 14, 17syl31anc 1370 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
19 simplrl 776 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐹:𝐴𝐵)
203hausflf 22600 . . . . . . 7 ((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
216, 18, 19, 20syl3anc 1368 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
2221ex 416 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2322alrimiv 1928 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
24 moanimv 2705 . . . . 5 (∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2524albii 1821 . . . 4 (∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2623, 25sylibr 237 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
27 df-br 5043 . . . . . . 7 (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2827a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
292, 3cnextfval 22665 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
301, 29sylanl2 680 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3130eleq2d 2899 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
32 opeliunxp 5596 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3332a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3428, 31, 333bitrd 308 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3534mobidv 2632 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3635albidv 1921 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3726, 36mpbird 260 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦)
38 dffun6 6349 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) ↔ (Rel ((𝐽CnExt𝐾)‘𝐹) ∧ ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦))
395, 37, 38sylanbrc 586 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2114  ∃*wmo 2620  wss 3908  {csn 4539  cop 4545   cuni 4813   ciun 4894   class class class wbr 5042   × cxp 5530  Rel wrel 5537  Fun wfun 6328  wf 6330  cfv 6334  (class class class)co 7140  t crest 16685  Topctop 21496  TopOnctopon 21513  clsccl 21621  neicnei 21700  Hauscha 21911  Filcfil 22448   fLimf cflf 22538  CnExtccnext 22662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-map 8395  df-pm 8396  df-rest 16687  df-fbas 20086  df-top 21497  df-topon 21514  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-haus 21918  df-fil 22449  df-flim 22542  df-flf 22543  df-cnext 22663
This theorem is referenced by:  cnextfvval  22668  cnextf  22669  cnextfres  22672
  Copyright terms: Public domain W3C validator