MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfun Structured version   Visualization version   GIF version

Theorem cnextfun 23951
Description: If the target space is Hausdorff, a continuous extension is a function. (Contributed by Thierry Arnoux, 20-Dec-2017.)
Hypotheses
Ref Expression
cnextfrel.1 𝐶 = 𝐽
cnextfrel.2 𝐵 = 𝐾
Assertion
Ref Expression
cnextfun (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))

Proof of Theorem cnextfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23218 . . 3 (𝐾 ∈ Haus → 𝐾 ∈ Top)
2 cnextfrel.1 . . . 4 𝐶 = 𝐽
3 cnextfrel.2 . . . 4 𝐵 = 𝐾
42, 3cnextrel 23950 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
51, 4sylanl2 681 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
6 simpllr 775 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐾 ∈ Haus)
72toptopon 22804 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
87biimpi 216 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝐶))
98ad3antrrr 730 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ (TopOn‘𝐶))
10 simplrr 777 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐴𝐶)
119, 7sylibr 234 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ Top)
122clsss3 22946 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝐶) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
1311, 10, 12syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
14 simpr 484 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
1513, 14sseldd 3947 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
16 trnei 23779 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
1716biimpa 476 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
189, 10, 15, 14, 17syl31anc 1375 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
19 simplrl 776 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐹:𝐴𝐵)
203hausflf 23884 . . . . . . 7 ((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
216, 18, 19, 20syl3anc 1373 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
2221ex 412 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2322alrimiv 1927 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
24 moanimv 2612 . . . . 5 (∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2524albii 1819 . . . 4 (∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2623, 25sylibr 234 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
27 df-br 5108 . . . . . . 7 (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2827a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
292, 3cnextfval 23949 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
301, 29sylanl2 681 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3130eleq2d 2814 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
32 opeliunxp 5705 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3332a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3428, 31, 333bitrd 305 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3534mobidv 2542 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3635albidv 1920 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3726, 36mpbird 257 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦)
38 dffun6 6524 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) ↔ (Rel ((𝐽CnExt𝐾)‘𝐹) ∧ ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦))
395, 37, 38sylanbrc 583 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wss 3914  {csn 4589  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107   × cxp 5636  Rel wrel 5643  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  TopOnctopon 22797  clsccl 22905  neicnei 22984  Hauscha 23195  Filcfil 23732   fLimf cflf 23822  CnExtccnext 23946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-pm 8802  df-rest 17385  df-fbas 21261  df-top 22781  df-topon 22798  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-haus 23202  df-fil 23733  df-flim 23826  df-flf 23827  df-cnext 23947
This theorem is referenced by:  cnextfvval  23952  cnextf  23953  cnextfres  23956
  Copyright terms: Public domain W3C validator