MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfun Structured version   Visualization version   GIF version

Theorem cnextfun 23958
Description: If the target space is Hausdorff, a continuous extension is a function. (Contributed by Thierry Arnoux, 20-Dec-2017.)
Hypotheses
Ref Expression
cnextfrel.1 𝐶 = 𝐽
cnextfrel.2 𝐵 = 𝐾
Assertion
Ref Expression
cnextfun (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))

Proof of Theorem cnextfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23225 . . 3 (𝐾 ∈ Haus → 𝐾 ∈ Top)
2 cnextfrel.1 . . . 4 𝐶 = 𝐽
3 cnextfrel.2 . . . 4 𝐵 = 𝐾
42, 3cnextrel 23957 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
51, 4sylanl2 681 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
6 simpllr 775 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐾 ∈ Haus)
72toptopon 22811 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
87biimpi 216 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝐶))
98ad3antrrr 730 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ (TopOn‘𝐶))
10 simplrr 777 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐴𝐶)
119, 7sylibr 234 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ Top)
122clsss3 22953 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝐶) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
1311, 10, 12syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
14 simpr 484 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
1513, 14sseldd 3950 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
16 trnei 23786 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
1716biimpa 476 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
189, 10, 15, 14, 17syl31anc 1375 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
19 simplrl 776 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐹:𝐴𝐵)
203hausflf 23891 . . . . . . 7 ((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
216, 18, 19, 20syl3anc 1373 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
2221ex 412 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2322alrimiv 1927 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
24 moanimv 2613 . . . . 5 (∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2524albii 1819 . . . 4 (∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2623, 25sylibr 234 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
27 df-br 5111 . . . . . . 7 (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2827a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
292, 3cnextfval 23956 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
301, 29sylanl2 681 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3130eleq2d 2815 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
32 opeliunxp 5708 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3332a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3428, 31, 333bitrd 305 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3534mobidv 2543 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3635albidv 1920 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3726, 36mpbird 257 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦)
38 dffun6 6527 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) ↔ (Rel ((𝐽CnExt𝐾)‘𝐹) ∧ ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦))
395, 37, 38sylanbrc 583 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  wss 3917  {csn 4592  cop 4598   cuni 4874   ciun 4958   class class class wbr 5110   × cxp 5639  Rel wrel 5646  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  TopOnctopon 22804  clsccl 22912  neicnei 22991  Hauscha 23202  Filcfil 23739   fLimf cflf 23829  CnExtccnext 23953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-pm 8805  df-rest 17392  df-fbas 21268  df-top 22788  df-topon 22805  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-haus 23209  df-fil 23740  df-flim 23833  df-flf 23834  df-cnext 23954
This theorem is referenced by:  cnextfvval  23959  cnextf  23960  cnextfres  23963
  Copyright terms: Public domain W3C validator