| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | haustop 23339 | . . 3
⊢ (𝐾 ∈ Haus → 𝐾 ∈ Top) | 
| 2 |  | cnextfrel.1 | . . . 4
⊢ 𝐶 = ∪
𝐽 | 
| 3 |  | cnextfrel.2 | . . . 4
⊢ 𝐵 = ∪
𝐾 | 
| 4 | 2, 3 | cnextrel 24071 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) | 
| 5 | 1, 4 | sylanl2 681 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) | 
| 6 |  | simpllr 776 | . . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐾 ∈ Haus) | 
| 7 | 2 | toptopon 22923 | . . . . . . . . . 10
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶)) | 
| 8 | 7 | biimpi 216 | . . . . . . . . 9
⊢ (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝐶)) | 
| 9 | 8 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ (TopOn‘𝐶)) | 
| 10 |  | simplrr 778 | . . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐴 ⊆ 𝐶) | 
| 11 | 9, 7 | sylibr 234 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ Top) | 
| 12 | 2 | clsss3 23067 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶) | 
| 13 | 11, 10, 12 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶) | 
| 14 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴)) | 
| 15 | 13, 14 | sseldd 3984 | . . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ 𝐶) | 
| 16 |  | trnei 23900 | . . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))) | 
| 17 | 16 | biimpa 476 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) | 
| 18 | 9, 10, 15, 14, 17 | syl31anc 1375 | . . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)) | 
| 19 |  | simplrl 777 | . . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐹:𝐴⟶𝐵) | 
| 20 | 3 | hausflf 24005 | . . . . . . 7
⊢ ((𝐾 ∈ Haus ∧
(((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴⟶𝐵) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) | 
| 21 | 6, 18, 19, 20 | syl3anc 1373 | . . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) | 
| 22 | 21 | ex 412 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 23 | 22 | alrimiv 1927 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 24 |  | moanimv 2619 | . . . . 5
⊢
(∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 25 | 24 | albii 1819 | . . . 4
⊢
(∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 26 | 23, 25 | sylibr 234 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 27 |  | df-br 5144 | . . . . . . 7
⊢ (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹)) | 
| 28 | 27 | a1i 11 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹))) | 
| 29 | 2, 3 | cnextfval 24070 | . . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 30 | 1, 29 | sylanl2 681 | . . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪
𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 31 | 30 | eleq2d 2827 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (〈𝑥, 𝑦〉 ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ 〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) | 
| 32 |  | opeliunxp 5752 | . . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | 
| 33 | 32 | a1i 11 | . . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (〈𝑥, 𝑦〉 ∈ ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) | 
| 34 | 28, 31, 33 | 3bitrd 305 | . . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) | 
| 35 | 34 | mobidv 2549 | . . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) | 
| 36 | 35 | albidv 1920 | . . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) | 
| 37 | 26, 36 | mpbird 257 | . 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦) | 
| 38 |  | dffun6 6574 | . 2
⊢ (Fun
((𝐽CnExt𝐾)‘𝐹) ↔ (Rel ((𝐽CnExt𝐾)‘𝐹) ∧ ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦)) | 
| 39 | 5, 37, 38 | sylanbrc 583 | 1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹)) |