MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfun Structured version   Visualization version   GIF version

Theorem cnextfun 24088
Description: If the target space is Hausdorff, a continuous extension is a function. (Contributed by Thierry Arnoux, 20-Dec-2017.)
Hypotheses
Ref Expression
cnextfrel.1 𝐶 = 𝐽
cnextfrel.2 𝐵 = 𝐾
Assertion
Ref Expression
cnextfun (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))

Proof of Theorem cnextfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 23355 . . 3 (𝐾 ∈ Haus → 𝐾 ∈ Top)
2 cnextfrel.1 . . . 4 𝐶 = 𝐽
3 cnextfrel.2 . . . 4 𝐵 = 𝐾
42, 3cnextrel 24087 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
51, 4sylanl2 681 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹))
6 simpllr 776 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐾 ∈ Haus)
72toptopon 22939 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
87biimpi 216 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝐶))
98ad3antrrr 730 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ (TopOn‘𝐶))
10 simplrr 778 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐴𝐶)
119, 7sylibr 234 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐽 ∈ Top)
122clsss3 23083 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐴𝐶) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
1311, 10, 12syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ((cls‘𝐽)‘𝐴) ⊆ 𝐶)
14 simpr 484 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
1513, 14sseldd 3996 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝑥𝐶)
16 trnei 23916 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
1716biimpa 476 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑥𝐶) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
189, 10, 15, 14, 17syl31anc 1372 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
19 simplrl 777 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → 𝐹:𝐴𝐵)
203hausflf 24021 . . . . . . 7 ((𝐾 ∈ Haus ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) ∧ 𝐹:𝐴𝐵) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
216, 18, 19, 20syl3anc 1370 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝐴)) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))
2221ex 412 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2322alrimiv 1925 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
24 moanimv 2617 . . . . 5 (∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2524albii 1816 . . . 4 (∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝐴) → ∃*𝑦 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
2623, 25sylibr 234 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
27 df-br 5149 . . . . . . 7 (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹))
2827a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹)))
292, 3cnextfval 24086 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
301, 29sylanl2 681 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3130eleq2d 2825 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ ((𝐽CnExt𝐾)‘𝐹) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
32 opeliunxp 5756 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))
3332a1i 11 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (⟨𝑥, 𝑦⟩ ∈ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3428, 31, 333bitrd 305 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ (𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3534mobidv 2547 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3635albidv 1918 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → (∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦 ↔ ∀𝑥∃*𝑦(𝑥 ∈ ((cls‘𝐽)‘𝐴) ∧ 𝑦 ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))))
3726, 36mpbird 257 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦)
38 dffun6 6576 . 2 (Fun ((𝐽CnExt𝐾)‘𝐹) ↔ (Rel ((𝐽CnExt𝐾)‘𝐹) ∧ ∀𝑥∃*𝑦 𝑥((𝐽CnExt𝐾)‘𝐹)𝑦))
395, 37, 38sylanbrc 583 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Haus) ∧ (𝐹:𝐴𝐵𝐴𝐶)) → Fun ((𝐽CnExt𝐾)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  ∃*wmo 2536  wss 3963  {csn 4631  cop 4637   cuni 4912   ciun 4996   class class class wbr 5148   × cxp 5687  Rel wrel 5694  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  t crest 17467  Topctop 22915  TopOnctopon 22932  clsccl 23042  neicnei 23121  Hauscha 23332  Filcfil 23869   fLimf cflf 23959  CnExtccnext 24083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-pm 8868  df-rest 17469  df-fbas 21379  df-top 22916  df-topon 22933  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-haus 23339  df-fil 23870  df-flim 23963  df-flf 23964  df-cnext 24084
This theorem is referenced by:  cnextfvval  24089  cnextf  24090  cnextfres  24093
  Copyright terms: Public domain W3C validator