Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovig | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction (weak version). (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovig.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
ovig.2 | ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) |
ovig.3 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} |
Ref | Expression |
---|---|
ovig | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1146 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
2 | eleq1 2826 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑅 ↔ 𝐴 ∈ 𝑅)) | |
3 | eleq1 2826 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆)) | |
4 | 2, 3 | bi2anan9 635 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
5 | 4 | 3adant3 1130 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
6 | ovig.1 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | anbi12d 630 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜓))) |
8 | ovig.2 | . . . 4 ⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑) | |
9 | moanimv 2621 | . . . 4 ⊢ (∃*𝑧((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) ↔ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃*𝑧𝜑)) | |
10 | 8, 9 | mpbir 230 | . . 3 ⊢ ∃*𝑧((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) |
11 | ovig.3 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} | |
12 | 7, 10, 11 | ovigg 7396 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷) → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜓) → (𝐴𝐹𝐵) = 𝐶)) |
13 | 1, 12 | mpand 691 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 (class class class)co 7255 {coprab 7256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 |
This theorem is referenced by: addsrpr 10762 mulsrpr 10763 |
Copyright terms: Public domain | W3C validator |