MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovig Structured version   Visualization version   GIF version

Theorem ovig 7419
Description: The value of an operation class abstraction (weak version). (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovig.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
ovig.2 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
ovig.3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovig ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovig
StepHypRef Expression
1 3simpa 1147 . 2 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝐴𝑅𝐵𝑆))
2 eleq1 2826 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
3 eleq1 2826 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
42, 3bi2anan9 636 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
543adant3 1131 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
6 ovig.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
75, 6anbi12d 631 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜓)))
8 ovig.2 . . . 4 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
9 moanimv 2621 . . . 4 (∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑))
108, 9mpbir 230 . . 3 ∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑)
11 ovig.3 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
127, 10, 11ovigg 7418 . 2 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (((𝐴𝑅𝐵𝑆) ∧ 𝜓) → (𝐴𝐹𝐵) = 𝐶))
131, 12mpand 692 1 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ∃*wmo 2538  (class class class)co 7275  {coprab 7276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279
This theorem is referenced by:  addsrpr  10831  mulsrpr  10832
  Copyright terms: Public domain W3C validator