MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decsplit Structured version   Visualization version   GIF version

Theorem decsplit 17102
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1 𝐴 ∈ ℕ0
decsplit.2 𝐵 ∈ ℕ0
decsplit.3 𝐷 ∈ ℕ0
decsplit.4 𝑀 ∈ ℕ0
decsplit.5 (𝑀 + 1) = 𝑁
decsplit.6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
Assertion
Ref Expression
decsplit ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 12734 . . . . . 6 10 ∈ ℕ0
2 decsplit0.1 . . . . . . 7 𝐴 ∈ ℕ0
3 decsplit.4 . . . . . . . 8 𝑀 ∈ ℕ0
41, 3nn0expcli 14111 . . . . . . 7 (10↑𝑀) ∈ ℕ0
52, 4nn0mulcli 12547 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℕ0
61, 5nn0mulcli 12547 . . . . 5 (10 · (𝐴 · (10↑𝑀))) ∈ ℕ0
76nn0cni 12521 . . . 4 (10 · (𝐴 · (10↑𝑀))) ∈ ℂ
8 decsplit.2 . . . . . 6 𝐵 ∈ ℕ0
91, 8nn0mulcli 12547 . . . . 5 (10 · 𝐵) ∈ ℕ0
109nn0cni 12521 . . . 4 (10 · 𝐵) ∈ ℂ
11 decsplit.3 . . . . 5 𝐷 ∈ ℕ0
1211nn0cni 12521 . . . 4 𝐷 ∈ ℂ
137, 10, 12addassi 11253 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
141nn0cni 12521 . . . . . 6 10 ∈ ℂ
155nn0cni 12521 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℂ
168nn0cni 12521 . . . . . 6 𝐵 ∈ ℂ
1714, 15, 16adddii 11255 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵))
18 decsplit.6 . . . . . 6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
1918oveq2i 7424 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = (10 · 𝐶)
2017, 19eqtr3i 2759 . . . 4 ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) = (10 · 𝐶)
2120oveq1i 7423 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · 𝐶) + 𝐷)
2213, 21eqtr3i 2759 . 2 ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷)) = ((10 · 𝐶) + 𝐷)
23 decsplit.5 . . . . . 6 (𝑀 + 1) = 𝑁
244nn0cni 12521 . . . . . . 7 (10↑𝑀) ∈ ℂ
2524, 14mulcomi 11251 . . . . . 6 ((10↑𝑀) · 10) = (10 · (10↑𝑀))
261, 3, 23, 25numexpp1 17097 . . . . 5 (10↑𝑁) = (10 · (10↑𝑀))
2726oveq2i 7424 . . . 4 (𝐴 · (10↑𝑁)) = (𝐴 · (10 · (10↑𝑀)))
282nn0cni 12521 . . . . 5 𝐴 ∈ ℂ
2928, 14, 24mul12i 11438 . . . 4 (𝐴 · (10 · (10↑𝑀))) = (10 · (𝐴 · (10↑𝑀)))
3027, 29eqtri 2757 . . 3 (𝐴 · (10↑𝑁)) = (10 · (𝐴 · (10↑𝑀)))
31 dfdec10 12719 . . 3 𝐵𝐷 = ((10 · 𝐵) + 𝐷)
3230, 31oveq12i 7425 . 2 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
33 dfdec10 12719 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
3422, 32, 333eqtr4i 2767 1 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  (class class class)co 7413  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  0cn0 12509  cdc 12716  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-seq 14025  df-exp 14085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator