MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decsplit Structured version   Visualization version   GIF version

Theorem decsplit 16396
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1 𝐴 ∈ ℕ0
decsplit.2 𝐵 ∈ ℕ0
decsplit.3 𝐷 ∈ ℕ0
decsplit.4 𝑀 ∈ ℕ0
decsplit.5 (𝑀 + 1) = 𝑁
decsplit.6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
Assertion
Ref Expression
decsplit ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 12094 . . . . . 6 10 ∈ ℕ0
2 decsplit0.1 . . . . . . 7 𝐴 ∈ ℕ0
3 decsplit.4 . . . . . . . 8 𝑀 ∈ ℕ0
41, 3nn0expcli 13439 . . . . . . 7 (10↑𝑀) ∈ ℕ0
52, 4nn0mulcli 11913 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℕ0
61, 5nn0mulcli 11913 . . . . 5 (10 · (𝐴 · (10↑𝑀))) ∈ ℕ0
76nn0cni 11887 . . . 4 (10 · (𝐴 · (10↑𝑀))) ∈ ℂ
8 decsplit.2 . . . . . 6 𝐵 ∈ ℕ0
91, 8nn0mulcli 11913 . . . . 5 (10 · 𝐵) ∈ ℕ0
109nn0cni 11887 . . . 4 (10 · 𝐵) ∈ ℂ
11 decsplit.3 . . . . 5 𝐷 ∈ ℕ0
1211nn0cni 11887 . . . 4 𝐷 ∈ ℂ
137, 10, 12addassi 10628 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
141nn0cni 11887 . . . . . 6 10 ∈ ℂ
155nn0cni 11887 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℂ
168nn0cni 11887 . . . . . 6 𝐵 ∈ ℂ
1714, 15, 16adddii 10630 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵))
18 decsplit.6 . . . . . 6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
1918oveq2i 7141 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = (10 · 𝐶)
2017, 19eqtr3i 2846 . . . 4 ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) = (10 · 𝐶)
2120oveq1i 7140 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · 𝐶) + 𝐷)
2213, 21eqtr3i 2846 . 2 ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷)) = ((10 · 𝐶) + 𝐷)
23 decsplit.5 . . . . . 6 (𝑀 + 1) = 𝑁
244nn0cni 11887 . . . . . . 7 (10↑𝑀) ∈ ℂ
2524, 14mulcomi 10626 . . . . . 6 ((10↑𝑀) · 10) = (10 · (10↑𝑀))
261, 3, 23, 25numexpp1 16391 . . . . 5 (10↑𝑁) = (10 · (10↑𝑀))
2726oveq2i 7141 . . . 4 (𝐴 · (10↑𝑁)) = (𝐴 · (10 · (10↑𝑀)))
282nn0cni 11887 . . . . 5 𝐴 ∈ ℂ
2928, 14, 24mul12i 10812 . . . 4 (𝐴 · (10 · (10↑𝑀))) = (10 · (𝐴 · (10↑𝑀)))
3027, 29eqtri 2844 . . 3 (𝐴 · (10↑𝑁)) = (10 · (𝐴 · (10↑𝑀)))
31 dfdec10 12079 . . 3 𝐵𝐷 = ((10 · 𝐵) + 𝐷)
3230, 31oveq12i 7142 . 2 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
33 dfdec10 12079 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
3422, 32, 333eqtr4i 2854 1 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  (class class class)co 7130  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519  0cn0 11875  cdc 12076  cexp 13413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-seq 13353  df-exp 13414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator