| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decsplit | Structured version Visualization version GIF version | ||
| Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 |
| decsplit.2 | ⊢ 𝐵 ∈ ℕ0 |
| decsplit.3 | ⊢ 𝐷 ∈ ℕ0 |
| decsplit.4 | ⊢ 𝑀 ∈ ℕ0 |
| decsplit.5 | ⊢ (𝑀 + 1) = 𝑁 |
| decsplit.6 | ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| decsplit | ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12643 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 2 | decsplit0.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decsplit.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 4 | 1, 3 | nn0expcli 14029 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℕ0 |
| 5 | 2, 4 | nn0mulcli 12456 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℕ0 |
| 6 | 1, 5 | nn0mulcli 12456 | . . . . 5 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℕ0 |
| 7 | 6 | nn0cni 12430 | . . . 4 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℂ |
| 8 | decsplit.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 9 | 1, 8 | nn0mulcli 12456 | . . . . 5 ⊢ (;10 · 𝐵) ∈ ℕ0 |
| 10 | 9 | nn0cni 12430 | . . . 4 ⊢ (;10 · 𝐵) ∈ ℂ |
| 11 | decsplit.3 | . . . . 5 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | 11 | nn0cni 12430 | . . . 4 ⊢ 𝐷 ∈ ℂ |
| 13 | 7, 10, 12 | addassi 11160 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
| 14 | 1 | nn0cni 12430 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 15 | 5 | nn0cni 12430 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℂ |
| 16 | 8 | nn0cni 12430 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 15, 16 | adddii 11162 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) |
| 18 | decsplit.6 | . . . . . 6 ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 | |
| 19 | 18 | oveq2i 7380 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = (;10 · 𝐶) |
| 20 | 17, 19 | eqtr3i 2754 | . . . 4 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) = (;10 · 𝐶) |
| 21 | 20 | oveq1i 7379 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · 𝐶) + 𝐷) |
| 22 | 13, 21 | eqtr3i 2754 | . 2 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) = ((;10 · 𝐶) + 𝐷) |
| 23 | decsplit.5 | . . . . . 6 ⊢ (𝑀 + 1) = 𝑁 | |
| 24 | 4 | nn0cni 12430 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℂ |
| 25 | 24, 14 | mulcomi 11158 | . . . . . 6 ⊢ ((;10↑𝑀) · ;10) = (;10 · (;10↑𝑀)) |
| 26 | 1, 3, 23, 25 | numexpp1 17024 | . . . . 5 ⊢ (;10↑𝑁) = (;10 · (;10↑𝑀)) |
| 27 | 26 | oveq2i 7380 | . . . 4 ⊢ (𝐴 · (;10↑𝑁)) = (𝐴 · (;10 · (;10↑𝑀))) |
| 28 | 2 | nn0cni 12430 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 29 | 28, 14, 24 | mul12i 11345 | . . . 4 ⊢ (𝐴 · (;10 · (;10↑𝑀))) = (;10 · (𝐴 · (;10↑𝑀))) |
| 30 | 27, 29 | eqtri 2752 | . . 3 ⊢ (𝐴 · (;10↑𝑁)) = (;10 · (𝐴 · (;10↑𝑀))) |
| 31 | dfdec10 12628 | . . 3 ⊢ ;𝐵𝐷 = ((;10 · 𝐵) + 𝐷) | |
| 32 | 30, 31 | oveq12i 7381 | . 2 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
| 33 | dfdec10 12628 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 34 | 22, 32, 33 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 ℕ0cn0 12418 ;cdc 12625 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |