Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decsplit | Structured version Visualization version GIF version |
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 |
decsplit.2 | ⊢ 𝐵 ∈ ℕ0 |
decsplit.3 | ⊢ 𝐷 ∈ ℕ0 |
decsplit.4 | ⊢ 𝑀 ∈ ℕ0 |
decsplit.5 | ⊢ (𝑀 + 1) = 𝑁 |
decsplit.6 | ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
decsplit | ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12501 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
2 | decsplit0.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
3 | decsplit.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
4 | 1, 3 | nn0expcli 13855 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℕ0 |
5 | 2, 4 | nn0mulcli 12317 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℕ0 |
6 | 1, 5 | nn0mulcli 12317 | . . . . 5 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℕ0 |
7 | 6 | nn0cni 12291 | . . . 4 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℂ |
8 | decsplit.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
9 | 1, 8 | nn0mulcli 12317 | . . . . 5 ⊢ (;10 · 𝐵) ∈ ℕ0 |
10 | 9 | nn0cni 12291 | . . . 4 ⊢ (;10 · 𝐵) ∈ ℂ |
11 | decsplit.3 | . . . . 5 ⊢ 𝐷 ∈ ℕ0 | |
12 | 11 | nn0cni 12291 | . . . 4 ⊢ 𝐷 ∈ ℂ |
13 | 7, 10, 12 | addassi 11031 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
14 | 1 | nn0cni 12291 | . . . . . 6 ⊢ ;10 ∈ ℂ |
15 | 5 | nn0cni 12291 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℂ |
16 | 8 | nn0cni 12291 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
17 | 14, 15, 16 | adddii 11033 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) |
18 | decsplit.6 | . . . . . 6 ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 | |
19 | 18 | oveq2i 7318 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = (;10 · 𝐶) |
20 | 17, 19 | eqtr3i 2766 | . . . 4 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) = (;10 · 𝐶) |
21 | 20 | oveq1i 7317 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · 𝐶) + 𝐷) |
22 | 13, 21 | eqtr3i 2766 | . 2 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) = ((;10 · 𝐶) + 𝐷) |
23 | decsplit.5 | . . . . . 6 ⊢ (𝑀 + 1) = 𝑁 | |
24 | 4 | nn0cni 12291 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℂ |
25 | 24, 14 | mulcomi 11029 | . . . . . 6 ⊢ ((;10↑𝑀) · ;10) = (;10 · (;10↑𝑀)) |
26 | 1, 3, 23, 25 | numexpp1 16824 | . . . . 5 ⊢ (;10↑𝑁) = (;10 · (;10↑𝑀)) |
27 | 26 | oveq2i 7318 | . . . 4 ⊢ (𝐴 · (;10↑𝑁)) = (𝐴 · (;10 · (;10↑𝑀))) |
28 | 2 | nn0cni 12291 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
29 | 28, 14, 24 | mul12i 11216 | . . . 4 ⊢ (𝐴 · (;10 · (;10↑𝑀))) = (;10 · (𝐴 · (;10↑𝑀))) |
30 | 27, 29 | eqtri 2764 | . . 3 ⊢ (𝐴 · (;10↑𝑁)) = (;10 · (𝐴 · (;10↑𝑀))) |
31 | dfdec10 12486 | . . 3 ⊢ ;𝐵𝐷 = ((;10 · 𝐵) + 𝐷) | |
32 | 30, 31 | oveq12i 7319 | . 2 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
33 | dfdec10 12486 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
34 | 22, 32, 33 | 3eqtr4i 2774 | 1 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 (class class class)co 7307 0cc0 10917 1c1 10918 + caddc 10920 · cmul 10922 ℕ0cn0 12279 ;cdc 12483 ↑cexp 13828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-seq 13768 df-exp 13829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |