| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decsplit | Structured version Visualization version GIF version | ||
| Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 |
| decsplit.2 | ⊢ 𝐵 ∈ ℕ0 |
| decsplit.3 | ⊢ 𝐷 ∈ ℕ0 |
| decsplit.4 | ⊢ 𝑀 ∈ ℕ0 |
| decsplit.5 | ⊢ (𝑀 + 1) = 𝑁 |
| decsplit.6 | ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| decsplit | ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12734 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 2 | decsplit0.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decsplit.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 4 | 1, 3 | nn0expcli 14111 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℕ0 |
| 5 | 2, 4 | nn0mulcli 12547 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℕ0 |
| 6 | 1, 5 | nn0mulcli 12547 | . . . . 5 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℕ0 |
| 7 | 6 | nn0cni 12521 | . . . 4 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℂ |
| 8 | decsplit.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 9 | 1, 8 | nn0mulcli 12547 | . . . . 5 ⊢ (;10 · 𝐵) ∈ ℕ0 |
| 10 | 9 | nn0cni 12521 | . . . 4 ⊢ (;10 · 𝐵) ∈ ℂ |
| 11 | decsplit.3 | . . . . 5 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | 11 | nn0cni 12521 | . . . 4 ⊢ 𝐷 ∈ ℂ |
| 13 | 7, 10, 12 | addassi 11253 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
| 14 | 1 | nn0cni 12521 | . . . . . 6 ⊢ ;10 ∈ ℂ |
| 15 | 5 | nn0cni 12521 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℂ |
| 16 | 8 | nn0cni 12521 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 17 | 14, 15, 16 | adddii 11255 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) |
| 18 | decsplit.6 | . . . . . 6 ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 | |
| 19 | 18 | oveq2i 7424 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = (;10 · 𝐶) |
| 20 | 17, 19 | eqtr3i 2759 | . . . 4 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) = (;10 · 𝐶) |
| 21 | 20 | oveq1i 7423 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · 𝐶) + 𝐷) |
| 22 | 13, 21 | eqtr3i 2759 | . 2 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) = ((;10 · 𝐶) + 𝐷) |
| 23 | decsplit.5 | . . . . . 6 ⊢ (𝑀 + 1) = 𝑁 | |
| 24 | 4 | nn0cni 12521 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℂ |
| 25 | 24, 14 | mulcomi 11251 | . . . . . 6 ⊢ ((;10↑𝑀) · ;10) = (;10 · (;10↑𝑀)) |
| 26 | 1, 3, 23, 25 | numexpp1 17097 | . . . . 5 ⊢ (;10↑𝑁) = (;10 · (;10↑𝑀)) |
| 27 | 26 | oveq2i 7424 | . . . 4 ⊢ (𝐴 · (;10↑𝑁)) = (𝐴 · (;10 · (;10↑𝑀))) |
| 28 | 2 | nn0cni 12521 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 29 | 28, 14, 24 | mul12i 11438 | . . . 4 ⊢ (𝐴 · (;10 · (;10↑𝑀))) = (;10 · (𝐴 · (;10↑𝑀))) |
| 30 | 27, 29 | eqtri 2757 | . . 3 ⊢ (𝐴 · (;10↑𝑁)) = (;10 · (𝐴 · (;10↑𝑀))) |
| 31 | dfdec10 12719 | . . 3 ⊢ ;𝐵𝐷 = ((;10 · 𝐵) + 𝐷) | |
| 32 | 30, 31 | oveq12i 7425 | . 2 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
| 33 | dfdec10 12719 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 34 | 22, 32, 33 | 3eqtr4i 2767 | 1 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 ℕ0cn0 12509 ;cdc 12716 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |