MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decsplit Structured version   Visualization version   GIF version

Theorem decsplit 17059
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1 𝐴 ∈ ℕ0
decsplit.2 𝐵 ∈ ℕ0
decsplit.3 𝐷 ∈ ℕ0
decsplit.4 𝑀 ∈ ℕ0
decsplit.5 (𝑀 + 1) = 𝑁
decsplit.6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
Assertion
Ref Expression
decsplit ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 12673 . . . . . 6 10 ∈ ℕ0
2 decsplit0.1 . . . . . . 7 𝐴 ∈ ℕ0
3 decsplit.4 . . . . . . . 8 𝑀 ∈ ℕ0
41, 3nn0expcli 14059 . . . . . . 7 (10↑𝑀) ∈ ℕ0
52, 4nn0mulcli 12486 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℕ0
61, 5nn0mulcli 12486 . . . . 5 (10 · (𝐴 · (10↑𝑀))) ∈ ℕ0
76nn0cni 12460 . . . 4 (10 · (𝐴 · (10↑𝑀))) ∈ ℂ
8 decsplit.2 . . . . . 6 𝐵 ∈ ℕ0
91, 8nn0mulcli 12486 . . . . 5 (10 · 𝐵) ∈ ℕ0
109nn0cni 12460 . . . 4 (10 · 𝐵) ∈ ℂ
11 decsplit.3 . . . . 5 𝐷 ∈ ℕ0
1211nn0cni 12460 . . . 4 𝐷 ∈ ℂ
137, 10, 12addassi 11190 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
141nn0cni 12460 . . . . . 6 10 ∈ ℂ
155nn0cni 12460 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℂ
168nn0cni 12460 . . . . . 6 𝐵 ∈ ℂ
1714, 15, 16adddii 11192 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵))
18 decsplit.6 . . . . . 6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
1918oveq2i 7400 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = (10 · 𝐶)
2017, 19eqtr3i 2755 . . . 4 ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) = (10 · 𝐶)
2120oveq1i 7399 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · 𝐶) + 𝐷)
2213, 21eqtr3i 2755 . 2 ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷)) = ((10 · 𝐶) + 𝐷)
23 decsplit.5 . . . . . 6 (𝑀 + 1) = 𝑁
244nn0cni 12460 . . . . . . 7 (10↑𝑀) ∈ ℂ
2524, 14mulcomi 11188 . . . . . 6 ((10↑𝑀) · 10) = (10 · (10↑𝑀))
261, 3, 23, 25numexpp1 17054 . . . . 5 (10↑𝑁) = (10 · (10↑𝑀))
2726oveq2i 7400 . . . 4 (𝐴 · (10↑𝑁)) = (𝐴 · (10 · (10↑𝑀)))
282nn0cni 12460 . . . . 5 𝐴 ∈ ℂ
2928, 14, 24mul12i 11375 . . . 4 (𝐴 · (10 · (10↑𝑀))) = (10 · (𝐴 · (10↑𝑀)))
3027, 29eqtri 2753 . . 3 (𝐴 · (10↑𝑁)) = (10 · (𝐴 · (10↑𝑀)))
31 dfdec10 12658 . . 3 𝐵𝐷 = ((10 · 𝐵) + 𝐷)
3230, 31oveq12i 7401 . 2 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
33 dfdec10 12658 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
3422, 32, 333eqtr4i 2763 1 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7389  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  0cn0 12448  cdc 12655  cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-seq 13973  df-exp 14033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator