MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decsplit Structured version   Visualization version   GIF version

Theorem decsplit 16765
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1 𝐴 ∈ ℕ0
decsplit.2 𝐵 ∈ ℕ0
decsplit.3 𝐷 ∈ ℕ0
decsplit.4 𝑀 ∈ ℕ0
decsplit.5 (𝑀 + 1) = 𝑁
decsplit.6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
Assertion
Ref Expression
decsplit ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 12437 . . . . . 6 10 ∈ ℕ0
2 decsplit0.1 . . . . . . 7 𝐴 ∈ ℕ0
3 decsplit.4 . . . . . . . 8 𝑀 ∈ ℕ0
41, 3nn0expcli 13790 . . . . . . 7 (10↑𝑀) ∈ ℕ0
52, 4nn0mulcli 12254 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℕ0
61, 5nn0mulcli 12254 . . . . 5 (10 · (𝐴 · (10↑𝑀))) ∈ ℕ0
76nn0cni 12228 . . . 4 (10 · (𝐴 · (10↑𝑀))) ∈ ℂ
8 decsplit.2 . . . . . 6 𝐵 ∈ ℕ0
91, 8nn0mulcli 12254 . . . . 5 (10 · 𝐵) ∈ ℕ0
109nn0cni 12228 . . . 4 (10 · 𝐵) ∈ ℂ
11 decsplit.3 . . . . 5 𝐷 ∈ ℕ0
1211nn0cni 12228 . . . 4 𝐷 ∈ ℂ
137, 10, 12addassi 10969 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
141nn0cni 12228 . . . . . 6 10 ∈ ℂ
155nn0cni 12228 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℂ
168nn0cni 12228 . . . . . 6 𝐵 ∈ ℂ
1714, 15, 16adddii 10971 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵))
18 decsplit.6 . . . . . 6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
1918oveq2i 7279 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = (10 · 𝐶)
2017, 19eqtr3i 2769 . . . 4 ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) = (10 · 𝐶)
2120oveq1i 7278 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · 𝐶) + 𝐷)
2213, 21eqtr3i 2769 . 2 ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷)) = ((10 · 𝐶) + 𝐷)
23 decsplit.5 . . . . . 6 (𝑀 + 1) = 𝑁
244nn0cni 12228 . . . . . . 7 (10↑𝑀) ∈ ℂ
2524, 14mulcomi 10967 . . . . . 6 ((10↑𝑀) · 10) = (10 · (10↑𝑀))
261, 3, 23, 25numexpp1 16760 . . . . 5 (10↑𝑁) = (10 · (10↑𝑀))
2726oveq2i 7279 . . . 4 (𝐴 · (10↑𝑁)) = (𝐴 · (10 · (10↑𝑀)))
282nn0cni 12228 . . . . 5 𝐴 ∈ ℂ
2928, 14, 24mul12i 11153 . . . 4 (𝐴 · (10 · (10↑𝑀))) = (10 · (𝐴 · (10↑𝑀)))
3027, 29eqtri 2767 . . 3 (𝐴 · (10↑𝑁)) = (10 · (𝐴 · (10↑𝑀)))
31 dfdec10 12422 . . 3 𝐵𝐷 = ((10 · 𝐵) + 𝐷)
3230, 31oveq12i 7280 . 2 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
33 dfdec10 12422 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
3422, 32, 333eqtr4i 2777 1 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  0cn0 12216  cdc 12419  cexp 13763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-seq 13703  df-exp 13764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator