Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decsplit | Structured version Visualization version GIF version |
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 |
decsplit.2 | ⊢ 𝐵 ∈ ℕ0 |
decsplit.3 | ⊢ 𝐷 ∈ ℕ0 |
decsplit.4 | ⊢ 𝑀 ∈ ℕ0 |
decsplit.5 | ⊢ (𝑀 + 1) = 𝑁 |
decsplit.6 | ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
decsplit | ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12437 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
2 | decsplit0.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
3 | decsplit.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
4 | 1, 3 | nn0expcli 13790 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℕ0 |
5 | 2, 4 | nn0mulcli 12254 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℕ0 |
6 | 1, 5 | nn0mulcli 12254 | . . . . 5 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℕ0 |
7 | 6 | nn0cni 12228 | . . . 4 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℂ |
8 | decsplit.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
9 | 1, 8 | nn0mulcli 12254 | . . . . 5 ⊢ (;10 · 𝐵) ∈ ℕ0 |
10 | 9 | nn0cni 12228 | . . . 4 ⊢ (;10 · 𝐵) ∈ ℂ |
11 | decsplit.3 | . . . . 5 ⊢ 𝐷 ∈ ℕ0 | |
12 | 11 | nn0cni 12228 | . . . 4 ⊢ 𝐷 ∈ ℂ |
13 | 7, 10, 12 | addassi 10969 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
14 | 1 | nn0cni 12228 | . . . . . 6 ⊢ ;10 ∈ ℂ |
15 | 5 | nn0cni 12228 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℂ |
16 | 8 | nn0cni 12228 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
17 | 14, 15, 16 | adddii 10971 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) |
18 | decsplit.6 | . . . . . 6 ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 | |
19 | 18 | oveq2i 7279 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = (;10 · 𝐶) |
20 | 17, 19 | eqtr3i 2769 | . . . 4 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) = (;10 · 𝐶) |
21 | 20 | oveq1i 7278 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · 𝐶) + 𝐷) |
22 | 13, 21 | eqtr3i 2769 | . 2 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) = ((;10 · 𝐶) + 𝐷) |
23 | decsplit.5 | . . . . . 6 ⊢ (𝑀 + 1) = 𝑁 | |
24 | 4 | nn0cni 12228 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℂ |
25 | 24, 14 | mulcomi 10967 | . . . . . 6 ⊢ ((;10↑𝑀) · ;10) = (;10 · (;10↑𝑀)) |
26 | 1, 3, 23, 25 | numexpp1 16760 | . . . . 5 ⊢ (;10↑𝑁) = (;10 · (;10↑𝑀)) |
27 | 26 | oveq2i 7279 | . . . 4 ⊢ (𝐴 · (;10↑𝑁)) = (𝐴 · (;10 · (;10↑𝑀))) |
28 | 2 | nn0cni 12228 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
29 | 28, 14, 24 | mul12i 11153 | . . . 4 ⊢ (𝐴 · (;10 · (;10↑𝑀))) = (;10 · (𝐴 · (;10↑𝑀))) |
30 | 27, 29 | eqtri 2767 | . . 3 ⊢ (𝐴 · (;10↑𝑁)) = (;10 · (𝐴 · (;10↑𝑀))) |
31 | dfdec10 12422 | . . 3 ⊢ ;𝐵𝐷 = ((;10 · 𝐵) + 𝐷) | |
32 | 30, 31 | oveq12i 7280 | . 2 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
33 | dfdec10 12422 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
34 | 22, 32, 33 | 3eqtr4i 2777 | 1 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 (class class class)co 7268 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 ℕ0cn0 12216 ;cdc 12419 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-seq 13703 df-exp 13764 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |