![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decsplit | Structured version Visualization version GIF version |
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
decsplit0.1 | โข ๐ด โ โ0 |
decsplit.2 | โข ๐ต โ โ0 |
decsplit.3 | โข ๐ท โ โ0 |
decsplit.4 | โข ๐ โ โ0 |
decsplit.5 | โข (๐ + 1) = ๐ |
decsplit.6 | โข ((๐ด ยท (;10โ๐)) + ๐ต) = ๐ถ |
Ref | Expression |
---|---|
decsplit | โข ((๐ด ยท (;10โ๐)) + ;๐ต๐ท) = ;๐ถ๐ท |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12694 | . . . . . 6 โข ;10 โ โ0 | |
2 | decsplit0.1 | . . . . . . 7 โข ๐ด โ โ0 | |
3 | decsplit.4 | . . . . . . . 8 โข ๐ โ โ0 | |
4 | 1, 3 | nn0expcli 14053 | . . . . . . 7 โข (;10โ๐) โ โ0 |
5 | 2, 4 | nn0mulcli 12509 | . . . . . 6 โข (๐ด ยท (;10โ๐)) โ โ0 |
6 | 1, 5 | nn0mulcli 12509 | . . . . 5 โข (;10 ยท (๐ด ยท (;10โ๐))) โ โ0 |
7 | 6 | nn0cni 12483 | . . . 4 โข (;10 ยท (๐ด ยท (;10โ๐))) โ โ |
8 | decsplit.2 | . . . . . 6 โข ๐ต โ โ0 | |
9 | 1, 8 | nn0mulcli 12509 | . . . . 5 โข (;10 ยท ๐ต) โ โ0 |
10 | 9 | nn0cni 12483 | . . . 4 โข (;10 ยท ๐ต) โ โ |
11 | decsplit.3 | . . . . 5 โข ๐ท โ โ0 | |
12 | 11 | nn0cni 12483 | . . . 4 โข ๐ท โ โ |
13 | 7, 10, 12 | addassi 11223 | . . 3 โข (((;10 ยท (๐ด ยท (;10โ๐))) + (;10 ยท ๐ต)) + ๐ท) = ((;10 ยท (๐ด ยท (;10โ๐))) + ((;10 ยท ๐ต) + ๐ท)) |
14 | 1 | nn0cni 12483 | . . . . . 6 โข ;10 โ โ |
15 | 5 | nn0cni 12483 | . . . . . 6 โข (๐ด ยท (;10โ๐)) โ โ |
16 | 8 | nn0cni 12483 | . . . . . 6 โข ๐ต โ โ |
17 | 14, 15, 16 | adddii 11225 | . . . . 5 โข (;10 ยท ((๐ด ยท (;10โ๐)) + ๐ต)) = ((;10 ยท (๐ด ยท (;10โ๐))) + (;10 ยท ๐ต)) |
18 | decsplit.6 | . . . . . 6 โข ((๐ด ยท (;10โ๐)) + ๐ต) = ๐ถ | |
19 | 18 | oveq2i 7419 | . . . . 5 โข (;10 ยท ((๐ด ยท (;10โ๐)) + ๐ต)) = (;10 ยท ๐ถ) |
20 | 17, 19 | eqtr3i 2762 | . . . 4 โข ((;10 ยท (๐ด ยท (;10โ๐))) + (;10 ยท ๐ต)) = (;10 ยท ๐ถ) |
21 | 20 | oveq1i 7418 | . . 3 โข (((;10 ยท (๐ด ยท (;10โ๐))) + (;10 ยท ๐ต)) + ๐ท) = ((;10 ยท ๐ถ) + ๐ท) |
22 | 13, 21 | eqtr3i 2762 | . 2 โข ((;10 ยท (๐ด ยท (;10โ๐))) + ((;10 ยท ๐ต) + ๐ท)) = ((;10 ยท ๐ถ) + ๐ท) |
23 | decsplit.5 | . . . . . 6 โข (๐ + 1) = ๐ | |
24 | 4 | nn0cni 12483 | . . . . . . 7 โข (;10โ๐) โ โ |
25 | 24, 14 | mulcomi 11221 | . . . . . 6 โข ((;10โ๐) ยท ;10) = (;10 ยท (;10โ๐)) |
26 | 1, 3, 23, 25 | numexpp1 17010 | . . . . 5 โข (;10โ๐) = (;10 ยท (;10โ๐)) |
27 | 26 | oveq2i 7419 | . . . 4 โข (๐ด ยท (;10โ๐)) = (๐ด ยท (;10 ยท (;10โ๐))) |
28 | 2 | nn0cni 12483 | . . . . 5 โข ๐ด โ โ |
29 | 28, 14, 24 | mul12i 11408 | . . . 4 โข (๐ด ยท (;10 ยท (;10โ๐))) = (;10 ยท (๐ด ยท (;10โ๐))) |
30 | 27, 29 | eqtri 2760 | . . 3 โข (๐ด ยท (;10โ๐)) = (;10 ยท (๐ด ยท (;10โ๐))) |
31 | dfdec10 12679 | . . 3 โข ;๐ต๐ท = ((;10 ยท ๐ต) + ๐ท) | |
32 | 30, 31 | oveq12i 7420 | . 2 โข ((๐ด ยท (;10โ๐)) + ;๐ต๐ท) = ((;10 ยท (๐ด ยท (;10โ๐))) + ((;10 ยท ๐ต) + ๐ท)) |
33 | dfdec10 12679 | . 2 โข ;๐ถ๐ท = ((;10 ยท ๐ถ) + ๐ท) | |
34 | 22, 32, 33 | 3eqtr4i 2770 | 1 โข ((๐ด ยท (;10โ๐)) + ;๐ต๐ท) = ;๐ถ๐ท |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 โ wcel 2106 (class class class)co 7408 0cc0 11109 1c1 11110 + caddc 11112 ยท cmul 11114 โ0cn0 12471 ;cdc 12676 โcexp 14026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-seq 13966 df-exp 14027 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |