MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decsplit Structured version   Visualization version   GIF version

Theorem decsplit 16409
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
decsplit0.1 𝐴 ∈ ℕ0
decsplit.2 𝐵 ∈ ℕ0
decsplit.3 𝐷 ∈ ℕ0
decsplit.4 𝑀 ∈ ℕ0
decsplit.5 (𝑀 + 1) = 𝑁
decsplit.6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
Assertion
Ref Expression
decsplit ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷

Proof of Theorem decsplit
StepHypRef Expression
1 10nn0 12104 . . . . . 6 10 ∈ ℕ0
2 decsplit0.1 . . . . . . 7 𝐴 ∈ ℕ0
3 decsplit.4 . . . . . . . 8 𝑀 ∈ ℕ0
41, 3nn0expcli 13451 . . . . . . 7 (10↑𝑀) ∈ ℕ0
52, 4nn0mulcli 11923 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℕ0
61, 5nn0mulcli 11923 . . . . 5 (10 · (𝐴 · (10↑𝑀))) ∈ ℕ0
76nn0cni 11897 . . . 4 (10 · (𝐴 · (10↑𝑀))) ∈ ℂ
8 decsplit.2 . . . . . 6 𝐵 ∈ ℕ0
91, 8nn0mulcli 11923 . . . . 5 (10 · 𝐵) ∈ ℕ0
109nn0cni 11897 . . . 4 (10 · 𝐵) ∈ ℂ
11 decsplit.3 . . . . 5 𝐷 ∈ ℕ0
1211nn0cni 11897 . . . 4 𝐷 ∈ ℂ
137, 10, 12addassi 10640 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
141nn0cni 11897 . . . . . 6 10 ∈ ℂ
155nn0cni 11897 . . . . . 6 (𝐴 · (10↑𝑀)) ∈ ℂ
168nn0cni 11897 . . . . . 6 𝐵 ∈ ℂ
1714, 15, 16adddii 10642 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵))
18 decsplit.6 . . . . . 6 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝐶
1918oveq2i 7146 . . . . 5 (10 · ((𝐴 · (10↑𝑀)) + 𝐵)) = (10 · 𝐶)
2017, 19eqtr3i 2823 . . . 4 ((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) = (10 · 𝐶)
2120oveq1i 7145 . . 3 (((10 · (𝐴 · (10↑𝑀))) + (10 · 𝐵)) + 𝐷) = ((10 · 𝐶) + 𝐷)
2213, 21eqtr3i 2823 . 2 ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷)) = ((10 · 𝐶) + 𝐷)
23 decsplit.5 . . . . . 6 (𝑀 + 1) = 𝑁
244nn0cni 11897 . . . . . . 7 (10↑𝑀) ∈ ℂ
2524, 14mulcomi 10638 . . . . . 6 ((10↑𝑀) · 10) = (10 · (10↑𝑀))
261, 3, 23, 25numexpp1 16404 . . . . 5 (10↑𝑁) = (10 · (10↑𝑀))
2726oveq2i 7146 . . . 4 (𝐴 · (10↑𝑁)) = (𝐴 · (10 · (10↑𝑀)))
282nn0cni 11897 . . . . 5 𝐴 ∈ ℂ
2928, 14, 24mul12i 10824 . . . 4 (𝐴 · (10 · (10↑𝑀))) = (10 · (𝐴 · (10↑𝑀)))
3027, 29eqtri 2821 . . 3 (𝐴 · (10↑𝑁)) = (10 · (𝐴 · (10↑𝑀)))
31 dfdec10 12089 . . 3 𝐵𝐷 = ((10 · 𝐵) + 𝐷)
3230, 31oveq12i 7147 . 2 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = ((10 · (𝐴 · (10↑𝑀))) + ((10 · 𝐵) + 𝐷))
33 dfdec10 12089 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
3422, 32, 333eqtr4i 2831 1 ((𝐴 · (10↑𝑁)) + 𝐵𝐷) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  0cn0 11885  cdc 12086  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator