MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubrlem Structured version   Visualization version   GIF version

Theorem 1cubrlem 26727
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
1cubrlem ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))

Proof of Theorem 1cubrlem
StepHypRef Expression
1 neg1cn 12147 . . . 4 -1 ∈ ℂ
2 neg1ne0 12149 . . . 4 -1 ≠ 0
3 2re 12236 . . . . . 6 2 ∈ ℝ
4 3nn 12241 . . . . . 6 3 ∈ ℕ
5 nndivre 12203 . . . . . 6 ((2 ∈ ℝ ∧ 3 ∈ ℕ) → (2 / 3) ∈ ℝ)
63, 4, 5mp2an 692 . . . . 5 (2 / 3) ∈ ℝ
76recni 11164 . . . 4 (2 / 3) ∈ ℂ
8 cxpef 26550 . . . 4 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) = (exp‘((2 / 3) · (log‘-1))))
91, 2, 7, 8mp3an 1463 . . 3 (-1↑𝑐(2 / 3)) = (exp‘((2 / 3) · (log‘-1)))
10 logm1 26474 . . . . . 6 (log‘-1) = (i · π)
1110oveq2i 7380 . . . . 5 ((2 / 3) · (log‘-1)) = ((2 / 3) · (i · π))
12 ax-icn 11103 . . . . . 6 i ∈ ℂ
13 pire 26342 . . . . . . 7 π ∈ ℝ
1413recni 11164 . . . . . 6 π ∈ ℂ
157, 12, 14mul12i 11345 . . . . 5 ((2 / 3) · (i · π)) = (i · ((2 / 3) · π))
1611, 15eqtri 2752 . . . 4 ((2 / 3) · (log‘-1)) = (i · ((2 / 3) · π))
1716fveq2i 6843 . . 3 (exp‘((2 / 3) · (log‘-1))) = (exp‘(i · ((2 / 3) · π)))
18 6nn 12251 . . . . . . . . 9 6 ∈ ℕ
19 nndivre 12203 . . . . . . . . 9 ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ)
2013, 18, 19mp2an 692 . . . . . . . 8 (π / 6) ∈ ℝ
2120recni 11164 . . . . . . 7 (π / 6) ∈ ℂ
22 coshalfpip 26379 . . . . . . 7 ((π / 6) ∈ ℂ → (cos‘((π / 2) + (π / 6))) = -(sin‘(π / 6)))
2321, 22ax-mp 5 . . . . . 6 (cos‘((π / 2) + (π / 6))) = -(sin‘(π / 6))
24 2cn 12237 . . . . . . . . . 10 2 ∈ ℂ
25 2ne0 12266 . . . . . . . . . 10 2 ≠ 0
26 divrec2 11830 . . . . . . . . . 10 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (π / 2) = ((1 / 2) · π))
2714, 24, 25, 26mp3an 1463 . . . . . . . . 9 (π / 2) = ((1 / 2) · π)
28 6cn 12253 . . . . . . . . . 10 6 ∈ ℂ
2918nnne0i 12202 . . . . . . . . . 10 6 ≠ 0
30 divrec2 11830 . . . . . . . . . 10 ((π ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → (π / 6) = ((1 / 6) · π))
3114, 28, 29, 30mp3an 1463 . . . . . . . . 9 (π / 6) = ((1 / 6) · π)
3227, 31oveq12i 7381 . . . . . . . 8 ((π / 2) + (π / 6)) = (((1 / 2) · π) + ((1 / 6) · π))
3324, 25reccli 11888 . . . . . . . . 9 (1 / 2) ∈ ℂ
3428, 29reccli 11888 . . . . . . . . 9 (1 / 6) ∈ ℂ
3533, 34, 14adddiri 11163 . . . . . . . 8 (((1 / 2) + (1 / 6)) · π) = (((1 / 2) · π) + ((1 / 6) · π))
36 halfpm6th 12380 . . . . . . . . . 10 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
3736simpri 485 . . . . . . . . 9 ((1 / 2) + (1 / 6)) = (2 / 3)
3837oveq1i 7379 . . . . . . . 8 (((1 / 2) + (1 / 6)) · π) = ((2 / 3) · π)
3932, 35, 383eqtr2i 2758 . . . . . . 7 ((π / 2) + (π / 6)) = ((2 / 3) · π)
4039fveq2i 6843 . . . . . 6 (cos‘((π / 2) + (π / 6))) = (cos‘((2 / 3) · π))
41 sincos6thpi 26401 . . . . . . . . 9 ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
4241simpli 483 . . . . . . . 8 (sin‘(π / 6)) = (1 / 2)
4342negeqi 11390 . . . . . . 7 -(sin‘(π / 6)) = -(1 / 2)
44 ax-1cn 11102 . . . . . . . 8 1 ∈ ℂ
45 divneg 11850 . . . . . . . 8 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
4644, 24, 25, 45mp3an 1463 . . . . . . 7 -(1 / 2) = (-1 / 2)
4743, 46eqtri 2752 . . . . . 6 -(sin‘(π / 6)) = (-1 / 2)
4823, 40, 473eqtr3i 2760 . . . . 5 (cos‘((2 / 3) · π)) = (-1 / 2)
49 sinhalfpip 26377 . . . . . . . . 9 ((π / 6) ∈ ℂ → (sin‘((π / 2) + (π / 6))) = (cos‘(π / 6)))
5021, 49ax-mp 5 . . . . . . . 8 (sin‘((π / 2) + (π / 6))) = (cos‘(π / 6))
5139fveq2i 6843 . . . . . . . 8 (sin‘((π / 2) + (π / 6))) = (sin‘((2 / 3) · π))
5241simpri 485 . . . . . . . 8 (cos‘(π / 6)) = ((√‘3) / 2)
5350, 51, 523eqtr3i 2760 . . . . . . 7 (sin‘((2 / 3) · π)) = ((√‘3) / 2)
5453oveq2i 7380 . . . . . 6 (i · (sin‘((2 / 3) · π))) = (i · ((√‘3) / 2))
55 3re 12242 . . . . . . . . 9 3 ∈ ℝ
56 3nn0 12436 . . . . . . . . . 10 3 ∈ ℕ0
5756nn0ge0i 12445 . . . . . . . . 9 0 ≤ 3
58 resqrtcl 15195 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 ≤ 3) → (√‘3) ∈ ℝ)
5955, 57, 58mp2an 692 . . . . . . . 8 (√‘3) ∈ ℝ
6059recni 11164 . . . . . . 7 (√‘3) ∈ ℂ
6112, 60, 24, 25divassi 11914 . . . . . 6 ((i · (√‘3)) / 2) = (i · ((√‘3) / 2))
6254, 61eqtr4i 2755 . . . . 5 (i · (sin‘((2 / 3) · π))) = ((i · (√‘3)) / 2)
6348, 62oveq12i 7381 . . . 4 ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π)))) = ((-1 / 2) + ((i · (√‘3)) / 2))
647, 14mulcli 11157 . . . . 5 ((2 / 3) · π) ∈ ℂ
65 efival 16096 . . . . 5 (((2 / 3) · π) ∈ ℂ → (exp‘(i · ((2 / 3) · π))) = ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π)))))
6664, 65ax-mp 5 . . . 4 (exp‘(i · ((2 / 3) · π))) = ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π))))
6712, 60mulcli 11157 . . . . 5 (i · (√‘3)) ∈ ℂ
681, 67, 24, 25divdiri 11915 . . . 4 ((-1 + (i · (√‘3))) / 2) = ((-1 / 2) + ((i · (√‘3)) / 2))
6963, 66, 683eqtr4i 2762 . . 3 (exp‘(i · ((2 / 3) · π))) = ((-1 + (i · (√‘3))) / 2)
709, 17, 693eqtri 2756 . 2 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
71 1z 12539 . . . 4 1 ∈ ℤ
72 root1cj 26642 . . . 4 ((3 ∈ ℕ ∧ 1 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1↑𝑐(2 / 3))↑(3 − 1)))
734, 71, 72mp2an 692 . . 3 (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1↑𝑐(2 / 3))↑(3 − 1))
74 cxpcl 26559 . . . . . . . 8 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
751, 7, 74mp2an 692 . . . . . . 7 (-1↑𝑐(2 / 3)) ∈ ℂ
76 exp1 14008 . . . . . . 7 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
7775, 76ax-mp 5 . . . . . 6 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
7877, 70eqtri 2752 . . . . 5 ((-1↑𝑐(2 / 3))↑1) = ((-1 + (i · (√‘3))) / 2)
7978fveq2i 6843 . . . 4 (∗‘((-1↑𝑐(2 / 3))↑1)) = (∗‘((-1 + (i · (√‘3))) / 2))
801, 67addcli 11156 . . . . . 6 (-1 + (i · (√‘3))) ∈ ℂ
8180, 24cjdivi 15133 . . . . 5 (2 ≠ 0 → (∗‘((-1 + (i · (√‘3))) / 2)) = ((∗‘(-1 + (i · (√‘3)))) / (∗‘2)))
8225, 81ax-mp 5 . . . 4 (∗‘((-1 + (i · (√‘3))) / 2)) = ((∗‘(-1 + (i · (√‘3)))) / (∗‘2))
831, 67cjaddi 15130 . . . . . 6 (∗‘(-1 + (i · (√‘3)))) = ((∗‘-1) + (∗‘(i · (√‘3))))
84 neg1rr 12148 . . . . . . . 8 -1 ∈ ℝ
85 cjre 15081 . . . . . . . 8 (-1 ∈ ℝ → (∗‘-1) = -1)
8684, 85ax-mp 5 . . . . . . 7 (∗‘-1) = -1
8712, 60cjmuli 15131 . . . . . . . 8 (∗‘(i · (√‘3))) = ((∗‘i) · (∗‘(√‘3)))
88 cji 15101 . . . . . . . . 9 (∗‘i) = -i
89 cjre 15081 . . . . . . . . . 10 ((√‘3) ∈ ℝ → (∗‘(√‘3)) = (√‘3))
9059, 89ax-mp 5 . . . . . . . . 9 (∗‘(√‘3)) = (√‘3)
9188, 90oveq12i 7381 . . . . . . . 8 ((∗‘i) · (∗‘(√‘3))) = (-i · (√‘3))
9212, 60mulneg1i 11600 . . . . . . . 8 (-i · (√‘3)) = -(i · (√‘3))
9387, 91, 923eqtri 2756 . . . . . . 7 (∗‘(i · (√‘3))) = -(i · (√‘3))
9486, 93oveq12i 7381 . . . . . 6 ((∗‘-1) + (∗‘(i · (√‘3)))) = (-1 + -(i · (√‘3)))
951, 67negsubi 11476 . . . . . 6 (-1 + -(i · (√‘3))) = (-1 − (i · (√‘3)))
9683, 94, 953eqtri 2756 . . . . 5 (∗‘(-1 + (i · (√‘3)))) = (-1 − (i · (√‘3)))
97 cjre 15081 . . . . . 6 (2 ∈ ℝ → (∗‘2) = 2)
983, 97ax-mp 5 . . . . 5 (∗‘2) = 2
9996, 98oveq12i 7381 . . . 4 ((∗‘(-1 + (i · (√‘3)))) / (∗‘2)) = ((-1 − (i · (√‘3))) / 2)
10079, 82, 993eqtri 2756 . . 3 (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1 − (i · (√‘3))) / 2)
101 3m1e2 12285 . . . 4 (3 − 1) = 2
102101oveq2i 7380 . . 3 ((-1↑𝑐(2 / 3))↑(3 − 1)) = ((-1↑𝑐(2 / 3))↑2)
10373, 100, 1023eqtr3ri 2761 . 2 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
10470, 103pm3.2i 470 1 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  6c6 12221  cz 12505  cexp 14002  ccj 15038  csqrt 15175  expce 16003  sincsin 16005  cosccos 16006  πcpi 16008  logclog 26439  𝑐ccxp 26440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442
This theorem is referenced by:  1cubr  26728
  Copyright terms: Public domain W3C validator