Proof of Theorem 1cubrlem
Step | Hyp | Ref
| Expression |
1 | | neg1cn 12017 |
. . . 4
⊢ -1 ∈
ℂ |
2 | | neg1ne0 12019 |
. . . 4
⊢ -1 ≠
0 |
3 | | 2re 11977 |
. . . . . 6
⊢ 2 ∈
ℝ |
4 | | 3nn 11982 |
. . . . . 6
⊢ 3 ∈
ℕ |
5 | | nndivre 11944 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ 3 ∈ ℕ) → (2 / 3) ∈
ℝ) |
6 | 3, 4, 5 | mp2an 688 |
. . . . 5
⊢ (2 / 3)
∈ ℝ |
7 | 6 | recni 10920 |
. . . 4
⊢ (2 / 3)
∈ ℂ |
8 | | cxpef 25725 |
. . . 4
⊢ ((-1
∈ ℂ ∧ -1 ≠ 0 ∧ (2 / 3) ∈ ℂ) →
(-1↑𝑐(2 / 3)) = (exp‘((2 / 3) ·
(log‘-1)))) |
9 | 1, 2, 7, 8 | mp3an 1459 |
. . 3
⊢
(-1↑𝑐(2 / 3)) = (exp‘((2 / 3) ·
(log‘-1))) |
10 | | logm1 25649 |
. . . . . 6
⊢
(log‘-1) = (i · π) |
11 | 10 | oveq2i 7266 |
. . . . 5
⊢ ((2 / 3)
· (log‘-1)) = ((2 / 3) · (i ·
π)) |
12 | | ax-icn 10861 |
. . . . . 6
⊢ i ∈
ℂ |
13 | | pire 25520 |
. . . . . . 7
⊢ π
∈ ℝ |
14 | 13 | recni 10920 |
. . . . . 6
⊢ π
∈ ℂ |
15 | 7, 12, 14 | mul12i 11100 |
. . . . 5
⊢ ((2 / 3)
· (i · π)) = (i · ((2 / 3) ·
π)) |
16 | 11, 15 | eqtri 2766 |
. . . 4
⊢ ((2 / 3)
· (log‘-1)) = (i · ((2 / 3) ·
π)) |
17 | 16 | fveq2i 6759 |
. . 3
⊢
(exp‘((2 / 3) · (log‘-1))) = (exp‘(i ·
((2 / 3) · π))) |
18 | | 6nn 11992 |
. . . . . . . . 9
⊢ 6 ∈
ℕ |
19 | | nndivre 11944 |
. . . . . . . . 9
⊢ ((π
∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈
ℝ) |
20 | 13, 18, 19 | mp2an 688 |
. . . . . . . 8
⊢ (π /
6) ∈ ℝ |
21 | 20 | recni 10920 |
. . . . . . 7
⊢ (π /
6) ∈ ℂ |
22 | | coshalfpip 25556 |
. . . . . . 7
⊢ ((π /
6) ∈ ℂ → (cos‘((π / 2) + (π / 6))) =
-(sin‘(π / 6))) |
23 | 21, 22 | ax-mp 5 |
. . . . . 6
⊢
(cos‘((π / 2) + (π / 6))) = -(sin‘(π /
6)) |
24 | | 2cn 11978 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
25 | | 2ne0 12007 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
26 | | divrec2 11580 |
. . . . . . . . . 10
⊢ ((π
∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (π / 2) = ((1 /
2) · π)) |
27 | 14, 24, 25, 26 | mp3an 1459 |
. . . . . . . . 9
⊢ (π /
2) = ((1 / 2) · π) |
28 | | 6cn 11994 |
. . . . . . . . . 10
⊢ 6 ∈
ℂ |
29 | 18 | nnne0i 11943 |
. . . . . . . . . 10
⊢ 6 ≠
0 |
30 | | divrec2 11580 |
. . . . . . . . . 10
⊢ ((π
∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → (π / 6) = ((1 /
6) · π)) |
31 | 14, 28, 29, 30 | mp3an 1459 |
. . . . . . . . 9
⊢ (π /
6) = ((1 / 6) · π) |
32 | 27, 31 | oveq12i 7267 |
. . . . . . . 8
⊢ ((π /
2) + (π / 6)) = (((1 / 2) · π) + ((1 / 6) ·
π)) |
33 | 24, 25 | reccli 11635 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℂ |
34 | 28, 29 | reccli 11635 |
. . . . . . . . 9
⊢ (1 / 6)
∈ ℂ |
35 | 33, 34, 14 | adddiri 10919 |
. . . . . . . 8
⊢ (((1 / 2)
+ (1 / 6)) · π) = (((1 / 2) · π) + ((1 / 6) ·
π)) |
36 | | halfpm6th 12124 |
. . . . . . . . . 10
⊢ (((1 / 2)
− (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 /
3)) |
37 | 36 | simpri 485 |
. . . . . . . . 9
⊢ ((1 / 2)
+ (1 / 6)) = (2 / 3) |
38 | 37 | oveq1i 7265 |
. . . . . . . 8
⊢ (((1 / 2)
+ (1 / 6)) · π) = ((2 / 3) · π) |
39 | 32, 35, 38 | 3eqtr2i 2772 |
. . . . . . 7
⊢ ((π /
2) + (π / 6)) = ((2 / 3) · π) |
40 | 39 | fveq2i 6759 |
. . . . . 6
⊢
(cos‘((π / 2) + (π / 6))) = (cos‘((2 / 3) ·
π)) |
41 | | sincos6thpi 25577 |
. . . . . . . . 9
⊢
((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) =
((√‘3) / 2)) |
42 | 41 | simpli 483 |
. . . . . . . 8
⊢
(sin‘(π / 6)) = (1 / 2) |
43 | 42 | negeqi 11144 |
. . . . . . 7
⊢
-(sin‘(π / 6)) = -(1 / 2) |
44 | | ax-1cn 10860 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
45 | | divneg 11597 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 /
2)) |
46 | 44, 24, 25, 45 | mp3an 1459 |
. . . . . . 7
⊢ -(1 / 2)
= (-1 / 2) |
47 | 43, 46 | eqtri 2766 |
. . . . . 6
⊢
-(sin‘(π / 6)) = (-1 / 2) |
48 | 23, 40, 47 | 3eqtr3i 2774 |
. . . . 5
⊢
(cos‘((2 / 3) · π)) = (-1 / 2) |
49 | | sinhalfpip 25554 |
. . . . . . . . 9
⊢ ((π /
6) ∈ ℂ → (sin‘((π / 2) + (π / 6))) =
(cos‘(π / 6))) |
50 | 21, 49 | ax-mp 5 |
. . . . . . . 8
⊢
(sin‘((π / 2) + (π / 6))) = (cos‘(π /
6)) |
51 | 39 | fveq2i 6759 |
. . . . . . . 8
⊢
(sin‘((π / 2) + (π / 6))) = (sin‘((2 / 3) ·
π)) |
52 | 41 | simpri 485 |
. . . . . . . 8
⊢
(cos‘(π / 6)) = ((√‘3) / 2) |
53 | 50, 51, 52 | 3eqtr3i 2774 |
. . . . . . 7
⊢
(sin‘((2 / 3) · π)) = ((√‘3) /
2) |
54 | 53 | oveq2i 7266 |
. . . . . 6
⊢ (i
· (sin‘((2 / 3) · π))) = (i · ((√‘3)
/ 2)) |
55 | | 3re 11983 |
. . . . . . . . 9
⊢ 3 ∈
ℝ |
56 | | 3nn0 12181 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ0 |
57 | 56 | nn0ge0i 12190 |
. . . . . . . . 9
⊢ 0 ≤
3 |
58 | | resqrtcl 14893 |
. . . . . . . . 9
⊢ ((3
∈ ℝ ∧ 0 ≤ 3) → (√‘3) ∈
ℝ) |
59 | 55, 57, 58 | mp2an 688 |
. . . . . . . 8
⊢
(√‘3) ∈ ℝ |
60 | 59 | recni 10920 |
. . . . . . 7
⊢
(√‘3) ∈ ℂ |
61 | 12, 60, 24, 25 | divassi 11661 |
. . . . . 6
⊢ ((i
· (√‘3)) / 2) = (i · ((√‘3) /
2)) |
62 | 54, 61 | eqtr4i 2769 |
. . . . 5
⊢ (i
· (sin‘((2 / 3) · π))) = ((i · (√‘3))
/ 2) |
63 | 48, 62 | oveq12i 7267 |
. . . 4
⊢
((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3)
· π)))) = ((-1 / 2) + ((i · (√‘3)) /
2)) |
64 | 7, 14 | mulcli 10913 |
. . . . 5
⊢ ((2 / 3)
· π) ∈ ℂ |
65 | | efival 15789 |
. . . . 5
⊢ (((2 / 3)
· π) ∈ ℂ → (exp‘(i · ((2 / 3) ·
π))) = ((cos‘((2 / 3) · π)) + (i · (sin‘((2 /
3) · π))))) |
66 | 64, 65 | ax-mp 5 |
. . . 4
⊢
(exp‘(i · ((2 / 3) · π))) = ((cos‘((2 / 3)
· π)) + (i · (sin‘((2 / 3) ·
π)))) |
67 | 12, 60 | mulcli 10913 |
. . . . 5
⊢ (i
· (√‘3)) ∈ ℂ |
68 | 1, 67, 24, 25 | divdiri 11662 |
. . . 4
⊢ ((-1 + (i
· (√‘3))) / 2) = ((-1 / 2) + ((i · (√‘3))
/ 2)) |
69 | 63, 66, 68 | 3eqtr4i 2776 |
. . 3
⊢
(exp‘(i · ((2 / 3) · π))) = ((-1 + (i ·
(√‘3))) / 2) |
70 | 9, 17, 69 | 3eqtri 2770 |
. 2
⊢
(-1↑𝑐(2 / 3)) = ((-1 + (i ·
(√‘3))) / 2) |
71 | | 1z 12280 |
. . . 4
⊢ 1 ∈
ℤ |
72 | | root1cj 25814 |
. . . 4
⊢ ((3
∈ ℕ ∧ 1 ∈ ℤ) →
(∗‘((-1↑𝑐(2 / 3))↑1)) =
((-1↑𝑐(2 / 3))↑(3 − 1))) |
73 | 4, 71, 72 | mp2an 688 |
. . 3
⊢
(∗‘((-1↑𝑐(2 / 3))↑1)) =
((-1↑𝑐(2 / 3))↑(3 − 1)) |
74 | | cxpcl 25734 |
. . . . . . . 8
⊢ ((-1
∈ ℂ ∧ (2 / 3) ∈ ℂ) →
(-1↑𝑐(2 / 3)) ∈ ℂ) |
75 | 1, 7, 74 | mp2an 688 |
. . . . . . 7
⊢
(-1↑𝑐(2 / 3)) ∈ ℂ |
76 | | exp1 13716 |
. . . . . . 7
⊢
((-1↑𝑐(2 / 3)) ∈ ℂ →
((-1↑𝑐(2 / 3))↑1) =
(-1↑𝑐(2 / 3))) |
77 | 75, 76 | ax-mp 5 |
. . . . . 6
⊢
((-1↑𝑐(2 / 3))↑1) =
(-1↑𝑐(2 / 3)) |
78 | 77, 70 | eqtri 2766 |
. . . . 5
⊢
((-1↑𝑐(2 / 3))↑1) = ((-1 + (i ·
(√‘3))) / 2) |
79 | 78 | fveq2i 6759 |
. . . 4
⊢
(∗‘((-1↑𝑐(2 / 3))↑1)) =
(∗‘((-1 + (i · (√‘3))) / 2)) |
80 | 1, 67 | addcli 10912 |
. . . . . 6
⊢ (-1 + (i
· (√‘3))) ∈ ℂ |
81 | 80, 24 | cjdivi 14830 |
. . . . 5
⊢ (2 ≠ 0
→ (∗‘((-1 + (i · (√‘3))) / 2)) =
((∗‘(-1 + (i · (√‘3)))) /
(∗‘2))) |
82 | 25, 81 | ax-mp 5 |
. . . 4
⊢
(∗‘((-1 + (i · (√‘3))) / 2)) =
((∗‘(-1 + (i · (√‘3)))) /
(∗‘2)) |
83 | 1, 67 | cjaddi 14827 |
. . . . . 6
⊢
(∗‘(-1 + (i · (√‘3)))) =
((∗‘-1) + (∗‘(i ·
(√‘3)))) |
84 | | neg1rr 12018 |
. . . . . . . 8
⊢ -1 ∈
ℝ |
85 | | cjre 14778 |
. . . . . . . 8
⊢ (-1
∈ ℝ → (∗‘-1) = -1) |
86 | 84, 85 | ax-mp 5 |
. . . . . . 7
⊢
(∗‘-1) = -1 |
87 | 12, 60 | cjmuli 14828 |
. . . . . . . 8
⊢
(∗‘(i · (√‘3))) = ((∗‘i)
· (∗‘(√‘3))) |
88 | | cji 14798 |
. . . . . . . . 9
⊢
(∗‘i) = -i |
89 | | cjre 14778 |
. . . . . . . . . 10
⊢
((√‘3) ∈ ℝ →
(∗‘(√‘3)) = (√‘3)) |
90 | 59, 89 | ax-mp 5 |
. . . . . . . . 9
⊢
(∗‘(√‘3)) = (√‘3) |
91 | 88, 90 | oveq12i 7267 |
. . . . . . . 8
⊢
((∗‘i) · (∗‘(√‘3))) = (-i
· (√‘3)) |
92 | 12, 60 | mulneg1i 11351 |
. . . . . . . 8
⊢ (-i
· (√‘3)) = -(i · (√‘3)) |
93 | 87, 91, 92 | 3eqtri 2770 |
. . . . . . 7
⊢
(∗‘(i · (√‘3))) = -(i ·
(√‘3)) |
94 | 86, 93 | oveq12i 7267 |
. . . . . 6
⊢
((∗‘-1) + (∗‘(i · (√‘3))))
= (-1 + -(i · (√‘3))) |
95 | 1, 67 | negsubi 11229 |
. . . . . 6
⊢ (-1 + -(i
· (√‘3))) = (-1 − (i ·
(√‘3))) |
96 | 83, 94, 95 | 3eqtri 2770 |
. . . . 5
⊢
(∗‘(-1 + (i · (√‘3)))) = (-1 − (i
· (√‘3))) |
97 | | cjre 14778 |
. . . . . 6
⊢ (2 ∈
ℝ → (∗‘2) = 2) |
98 | 3, 97 | ax-mp 5 |
. . . . 5
⊢
(∗‘2) = 2 |
99 | 96, 98 | oveq12i 7267 |
. . . 4
⊢
((∗‘(-1 + (i · (√‘3)))) /
(∗‘2)) = ((-1 − (i · (√‘3))) /
2) |
100 | 79, 82, 99 | 3eqtri 2770 |
. . 3
⊢
(∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1
− (i · (√‘3))) / 2) |
101 | | 3m1e2 12031 |
. . . 4
⊢ (3
− 1) = 2 |
102 | 101 | oveq2i 7266 |
. . 3
⊢
((-1↑𝑐(2 / 3))↑(3 − 1)) =
((-1↑𝑐(2 / 3))↑2) |
103 | 73, 100, 102 | 3eqtr3ri 2775 |
. 2
⊢
((-1↑𝑐(2 / 3))↑2) = ((-1 − (i
· (√‘3))) / 2) |
104 | 70, 103 | pm3.2i 470 |
1
⊢
((-1↑𝑐(2 / 3)) = ((-1 + (i ·
(√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) =
((-1 − (i · (√‘3))) / 2)) |