MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubrlem Structured version   Visualization version   GIF version

Theorem 1cubrlem 26898
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
1cubrlem ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))

Proof of Theorem 1cubrlem
StepHypRef Expression
1 neg1cn 12377 . . . 4 -1 ∈ ℂ
2 neg1ne0 12379 . . . 4 -1 ≠ 0
3 2re 12337 . . . . . 6 2 ∈ ℝ
4 3nn 12342 . . . . . 6 3 ∈ ℕ
5 nndivre 12304 . . . . . 6 ((2 ∈ ℝ ∧ 3 ∈ ℕ) → (2 / 3) ∈ ℝ)
63, 4, 5mp2an 692 . . . . 5 (2 / 3) ∈ ℝ
76recni 11272 . . . 4 (2 / 3) ∈ ℂ
8 cxpef 26721 . . . 4 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) = (exp‘((2 / 3) · (log‘-1))))
91, 2, 7, 8mp3an 1460 . . 3 (-1↑𝑐(2 / 3)) = (exp‘((2 / 3) · (log‘-1)))
10 logm1 26645 . . . . . 6 (log‘-1) = (i · π)
1110oveq2i 7441 . . . . 5 ((2 / 3) · (log‘-1)) = ((2 / 3) · (i · π))
12 ax-icn 11211 . . . . . 6 i ∈ ℂ
13 pire 26514 . . . . . . 7 π ∈ ℝ
1413recni 11272 . . . . . 6 π ∈ ℂ
157, 12, 14mul12i 11453 . . . . 5 ((2 / 3) · (i · π)) = (i · ((2 / 3) · π))
1611, 15eqtri 2762 . . . 4 ((2 / 3) · (log‘-1)) = (i · ((2 / 3) · π))
1716fveq2i 6909 . . 3 (exp‘((2 / 3) · (log‘-1))) = (exp‘(i · ((2 / 3) · π)))
18 6nn 12352 . . . . . . . . 9 6 ∈ ℕ
19 nndivre 12304 . . . . . . . . 9 ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ)
2013, 18, 19mp2an 692 . . . . . . . 8 (π / 6) ∈ ℝ
2120recni 11272 . . . . . . 7 (π / 6) ∈ ℂ
22 coshalfpip 26550 . . . . . . 7 ((π / 6) ∈ ℂ → (cos‘((π / 2) + (π / 6))) = -(sin‘(π / 6)))
2321, 22ax-mp 5 . . . . . 6 (cos‘((π / 2) + (π / 6))) = -(sin‘(π / 6))
24 2cn 12338 . . . . . . . . . 10 2 ∈ ℂ
25 2ne0 12367 . . . . . . . . . 10 2 ≠ 0
26 divrec2 11936 . . . . . . . . . 10 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (π / 2) = ((1 / 2) · π))
2714, 24, 25, 26mp3an 1460 . . . . . . . . 9 (π / 2) = ((1 / 2) · π)
28 6cn 12354 . . . . . . . . . 10 6 ∈ ℂ
2918nnne0i 12303 . . . . . . . . . 10 6 ≠ 0
30 divrec2 11936 . . . . . . . . . 10 ((π ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → (π / 6) = ((1 / 6) · π))
3114, 28, 29, 30mp3an 1460 . . . . . . . . 9 (π / 6) = ((1 / 6) · π)
3227, 31oveq12i 7442 . . . . . . . 8 ((π / 2) + (π / 6)) = (((1 / 2) · π) + ((1 / 6) · π))
3324, 25reccli 11994 . . . . . . . . 9 (1 / 2) ∈ ℂ
3428, 29reccli 11994 . . . . . . . . 9 (1 / 6) ∈ ℂ
3533, 34, 14adddiri 11271 . . . . . . . 8 (((1 / 2) + (1 / 6)) · π) = (((1 / 2) · π) + ((1 / 6) · π))
36 halfpm6th 12484 . . . . . . . . . 10 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
3736simpri 485 . . . . . . . . 9 ((1 / 2) + (1 / 6)) = (2 / 3)
3837oveq1i 7440 . . . . . . . 8 (((1 / 2) + (1 / 6)) · π) = ((2 / 3) · π)
3932, 35, 383eqtr2i 2768 . . . . . . 7 ((π / 2) + (π / 6)) = ((2 / 3) · π)
4039fveq2i 6909 . . . . . 6 (cos‘((π / 2) + (π / 6))) = (cos‘((2 / 3) · π))
41 sincos6thpi 26572 . . . . . . . . 9 ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
4241simpli 483 . . . . . . . 8 (sin‘(π / 6)) = (1 / 2)
4342negeqi 11498 . . . . . . 7 -(sin‘(π / 6)) = -(1 / 2)
44 ax-1cn 11210 . . . . . . . 8 1 ∈ ℂ
45 divneg 11956 . . . . . . . 8 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
4644, 24, 25, 45mp3an 1460 . . . . . . 7 -(1 / 2) = (-1 / 2)
4743, 46eqtri 2762 . . . . . 6 -(sin‘(π / 6)) = (-1 / 2)
4823, 40, 473eqtr3i 2770 . . . . 5 (cos‘((2 / 3) · π)) = (-1 / 2)
49 sinhalfpip 26548 . . . . . . . . 9 ((π / 6) ∈ ℂ → (sin‘((π / 2) + (π / 6))) = (cos‘(π / 6)))
5021, 49ax-mp 5 . . . . . . . 8 (sin‘((π / 2) + (π / 6))) = (cos‘(π / 6))
5139fveq2i 6909 . . . . . . . 8 (sin‘((π / 2) + (π / 6))) = (sin‘((2 / 3) · π))
5241simpri 485 . . . . . . . 8 (cos‘(π / 6)) = ((√‘3) / 2)
5350, 51, 523eqtr3i 2770 . . . . . . 7 (sin‘((2 / 3) · π)) = ((√‘3) / 2)
5453oveq2i 7441 . . . . . 6 (i · (sin‘((2 / 3) · π))) = (i · ((√‘3) / 2))
55 3re 12343 . . . . . . . . 9 3 ∈ ℝ
56 3nn0 12541 . . . . . . . . . 10 3 ∈ ℕ0
5756nn0ge0i 12550 . . . . . . . . 9 0 ≤ 3
58 resqrtcl 15288 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 ≤ 3) → (√‘3) ∈ ℝ)
5955, 57, 58mp2an 692 . . . . . . . 8 (√‘3) ∈ ℝ
6059recni 11272 . . . . . . 7 (√‘3) ∈ ℂ
6112, 60, 24, 25divassi 12020 . . . . . 6 ((i · (√‘3)) / 2) = (i · ((√‘3) / 2))
6254, 61eqtr4i 2765 . . . . 5 (i · (sin‘((2 / 3) · π))) = ((i · (√‘3)) / 2)
6348, 62oveq12i 7442 . . . 4 ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π)))) = ((-1 / 2) + ((i · (√‘3)) / 2))
647, 14mulcli 11265 . . . . 5 ((2 / 3) · π) ∈ ℂ
65 efival 16184 . . . . 5 (((2 / 3) · π) ∈ ℂ → (exp‘(i · ((2 / 3) · π))) = ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π)))))
6664, 65ax-mp 5 . . . 4 (exp‘(i · ((2 / 3) · π))) = ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π))))
6712, 60mulcli 11265 . . . . 5 (i · (√‘3)) ∈ ℂ
681, 67, 24, 25divdiri 12021 . . . 4 ((-1 + (i · (√‘3))) / 2) = ((-1 / 2) + ((i · (√‘3)) / 2))
6963, 66, 683eqtr4i 2772 . . 3 (exp‘(i · ((2 / 3) · π))) = ((-1 + (i · (√‘3))) / 2)
709, 17, 693eqtri 2766 . 2 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
71 1z 12644 . . . 4 1 ∈ ℤ
72 root1cj 26813 . . . 4 ((3 ∈ ℕ ∧ 1 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1↑𝑐(2 / 3))↑(3 − 1)))
734, 71, 72mp2an 692 . . 3 (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1↑𝑐(2 / 3))↑(3 − 1))
74 cxpcl 26730 . . . . . . . 8 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
751, 7, 74mp2an 692 . . . . . . 7 (-1↑𝑐(2 / 3)) ∈ ℂ
76 exp1 14104 . . . . . . 7 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
7775, 76ax-mp 5 . . . . . 6 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
7877, 70eqtri 2762 . . . . 5 ((-1↑𝑐(2 / 3))↑1) = ((-1 + (i · (√‘3))) / 2)
7978fveq2i 6909 . . . 4 (∗‘((-1↑𝑐(2 / 3))↑1)) = (∗‘((-1 + (i · (√‘3))) / 2))
801, 67addcli 11264 . . . . . 6 (-1 + (i · (√‘3))) ∈ ℂ
8180, 24cjdivi 15226 . . . . 5 (2 ≠ 0 → (∗‘((-1 + (i · (√‘3))) / 2)) = ((∗‘(-1 + (i · (√‘3)))) / (∗‘2)))
8225, 81ax-mp 5 . . . 4 (∗‘((-1 + (i · (√‘3))) / 2)) = ((∗‘(-1 + (i · (√‘3)))) / (∗‘2))
831, 67cjaddi 15223 . . . . . 6 (∗‘(-1 + (i · (√‘3)))) = ((∗‘-1) + (∗‘(i · (√‘3))))
84 neg1rr 12378 . . . . . . . 8 -1 ∈ ℝ
85 cjre 15174 . . . . . . . 8 (-1 ∈ ℝ → (∗‘-1) = -1)
8684, 85ax-mp 5 . . . . . . 7 (∗‘-1) = -1
8712, 60cjmuli 15224 . . . . . . . 8 (∗‘(i · (√‘3))) = ((∗‘i) · (∗‘(√‘3)))
88 cji 15194 . . . . . . . . 9 (∗‘i) = -i
89 cjre 15174 . . . . . . . . . 10 ((√‘3) ∈ ℝ → (∗‘(√‘3)) = (√‘3))
9059, 89ax-mp 5 . . . . . . . . 9 (∗‘(√‘3)) = (√‘3)
9188, 90oveq12i 7442 . . . . . . . 8 ((∗‘i) · (∗‘(√‘3))) = (-i · (√‘3))
9212, 60mulneg1i 11706 . . . . . . . 8 (-i · (√‘3)) = -(i · (√‘3))
9387, 91, 923eqtri 2766 . . . . . . 7 (∗‘(i · (√‘3))) = -(i · (√‘3))
9486, 93oveq12i 7442 . . . . . 6 ((∗‘-1) + (∗‘(i · (√‘3)))) = (-1 + -(i · (√‘3)))
951, 67negsubi 11584 . . . . . 6 (-1 + -(i · (√‘3))) = (-1 − (i · (√‘3)))
9683, 94, 953eqtri 2766 . . . . 5 (∗‘(-1 + (i · (√‘3)))) = (-1 − (i · (√‘3)))
97 cjre 15174 . . . . . 6 (2 ∈ ℝ → (∗‘2) = 2)
983, 97ax-mp 5 . . . . 5 (∗‘2) = 2
9996, 98oveq12i 7442 . . . 4 ((∗‘(-1 + (i · (√‘3)))) / (∗‘2)) = ((-1 − (i · (√‘3))) / 2)
10079, 82, 993eqtri 2766 . . 3 (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1 − (i · (√‘3))) / 2)
101 3m1e2 12391 . . . 4 (3 − 1) = 2
102101oveq2i 7441 . . 3 ((-1↑𝑐(2 / 3))↑(3 − 1)) = ((-1↑𝑐(2 / 3))↑2)
10373, 100, 1023eqtr3ri 2771 . 2 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
10470, 103pm3.2i 470 1 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153  ici 11154   + caddc 11155   · cmul 11157  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  3c3 12319  6c6 12322  cz 12610  cexp 14098  ccj 15131  csqrt 15268  expce 16093  sincsin 16095  cosccos 16096  πcpi 16098  logclog 26610  𝑐ccxp 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613
This theorem is referenced by:  1cubr  26899
  Copyright terms: Public domain W3C validator