MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubrlem Structured version   Visualization version   GIF version

Theorem 1cubrlem 26749
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
1cubrlem ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))

Proof of Theorem 1cubrlem
StepHypRef Expression
1 neg1cn 12113 . . . 4 -1 ∈ ℂ
2 neg1ne0 12115 . . . 4 -1 ≠ 0
3 2re 12202 . . . . . 6 2 ∈ ℝ
4 3nn 12207 . . . . . 6 3 ∈ ℕ
5 nndivre 12169 . . . . . 6 ((2 ∈ ℝ ∧ 3 ∈ ℕ) → (2 / 3) ∈ ℝ)
63, 4, 5mp2an 692 . . . . 5 (2 / 3) ∈ ℝ
76recni 11129 . . . 4 (2 / 3) ∈ ℂ
8 cxpef 26572 . . . 4 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) = (exp‘((2 / 3) · (log‘-1))))
91, 2, 7, 8mp3an 1463 . . 3 (-1↑𝑐(2 / 3)) = (exp‘((2 / 3) · (log‘-1)))
10 logm1 26496 . . . . . 6 (log‘-1) = (i · π)
1110oveq2i 7360 . . . . 5 ((2 / 3) · (log‘-1)) = ((2 / 3) · (i · π))
12 ax-icn 11068 . . . . . 6 i ∈ ℂ
13 pire 26364 . . . . . . 7 π ∈ ℝ
1413recni 11129 . . . . . 6 π ∈ ℂ
157, 12, 14mul12i 11311 . . . . 5 ((2 / 3) · (i · π)) = (i · ((2 / 3) · π))
1611, 15eqtri 2752 . . . 4 ((2 / 3) · (log‘-1)) = (i · ((2 / 3) · π))
1716fveq2i 6825 . . 3 (exp‘((2 / 3) · (log‘-1))) = (exp‘(i · ((2 / 3) · π)))
18 6nn 12217 . . . . . . . . 9 6 ∈ ℕ
19 nndivre 12169 . . . . . . . . 9 ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ)
2013, 18, 19mp2an 692 . . . . . . . 8 (π / 6) ∈ ℝ
2120recni 11129 . . . . . . 7 (π / 6) ∈ ℂ
22 coshalfpip 26401 . . . . . . 7 ((π / 6) ∈ ℂ → (cos‘((π / 2) + (π / 6))) = -(sin‘(π / 6)))
2321, 22ax-mp 5 . . . . . 6 (cos‘((π / 2) + (π / 6))) = -(sin‘(π / 6))
24 2cn 12203 . . . . . . . . . 10 2 ∈ ℂ
25 2ne0 12232 . . . . . . . . . 10 2 ≠ 0
26 divrec2 11796 . . . . . . . . . 10 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (π / 2) = ((1 / 2) · π))
2714, 24, 25, 26mp3an 1463 . . . . . . . . 9 (π / 2) = ((1 / 2) · π)
28 6cn 12219 . . . . . . . . . 10 6 ∈ ℂ
2918nnne0i 12168 . . . . . . . . . 10 6 ≠ 0
30 divrec2 11796 . . . . . . . . . 10 ((π ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → (π / 6) = ((1 / 6) · π))
3114, 28, 29, 30mp3an 1463 . . . . . . . . 9 (π / 6) = ((1 / 6) · π)
3227, 31oveq12i 7361 . . . . . . . 8 ((π / 2) + (π / 6)) = (((1 / 2) · π) + ((1 / 6) · π))
3324, 25reccli 11854 . . . . . . . . 9 (1 / 2) ∈ ℂ
3428, 29reccli 11854 . . . . . . . . 9 (1 / 6) ∈ ℂ
3533, 34, 14adddiri 11128 . . . . . . . 8 (((1 / 2) + (1 / 6)) · π) = (((1 / 2) · π) + ((1 / 6) · π))
36 halfpm6th 12346 . . . . . . . . . 10 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
3736simpri 485 . . . . . . . . 9 ((1 / 2) + (1 / 6)) = (2 / 3)
3837oveq1i 7359 . . . . . . . 8 (((1 / 2) + (1 / 6)) · π) = ((2 / 3) · π)
3932, 35, 383eqtr2i 2758 . . . . . . 7 ((π / 2) + (π / 6)) = ((2 / 3) · π)
4039fveq2i 6825 . . . . . 6 (cos‘((π / 2) + (π / 6))) = (cos‘((2 / 3) · π))
41 sincos6thpi 26423 . . . . . . . . 9 ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
4241simpli 483 . . . . . . . 8 (sin‘(π / 6)) = (1 / 2)
4342negeqi 11356 . . . . . . 7 -(sin‘(π / 6)) = -(1 / 2)
44 ax-1cn 11067 . . . . . . . 8 1 ∈ ℂ
45 divneg 11816 . . . . . . . 8 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
4644, 24, 25, 45mp3an 1463 . . . . . . 7 -(1 / 2) = (-1 / 2)
4743, 46eqtri 2752 . . . . . 6 -(sin‘(π / 6)) = (-1 / 2)
4823, 40, 473eqtr3i 2760 . . . . 5 (cos‘((2 / 3) · π)) = (-1 / 2)
49 sinhalfpip 26399 . . . . . . . . 9 ((π / 6) ∈ ℂ → (sin‘((π / 2) + (π / 6))) = (cos‘(π / 6)))
5021, 49ax-mp 5 . . . . . . . 8 (sin‘((π / 2) + (π / 6))) = (cos‘(π / 6))
5139fveq2i 6825 . . . . . . . 8 (sin‘((π / 2) + (π / 6))) = (sin‘((2 / 3) · π))
5241simpri 485 . . . . . . . 8 (cos‘(π / 6)) = ((√‘3) / 2)
5350, 51, 523eqtr3i 2760 . . . . . . 7 (sin‘((2 / 3) · π)) = ((√‘3) / 2)
5453oveq2i 7360 . . . . . 6 (i · (sin‘((2 / 3) · π))) = (i · ((√‘3) / 2))
55 3re 12208 . . . . . . . . 9 3 ∈ ℝ
56 3nn0 12402 . . . . . . . . . 10 3 ∈ ℕ0
5756nn0ge0i 12411 . . . . . . . . 9 0 ≤ 3
58 resqrtcl 15160 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 ≤ 3) → (√‘3) ∈ ℝ)
5955, 57, 58mp2an 692 . . . . . . . 8 (√‘3) ∈ ℝ
6059recni 11129 . . . . . . 7 (√‘3) ∈ ℂ
6112, 60, 24, 25divassi 11880 . . . . . 6 ((i · (√‘3)) / 2) = (i · ((√‘3) / 2))
6254, 61eqtr4i 2755 . . . . 5 (i · (sin‘((2 / 3) · π))) = ((i · (√‘3)) / 2)
6348, 62oveq12i 7361 . . . 4 ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π)))) = ((-1 / 2) + ((i · (√‘3)) / 2))
647, 14mulcli 11122 . . . . 5 ((2 / 3) · π) ∈ ℂ
65 efival 16061 . . . . 5 (((2 / 3) · π) ∈ ℂ → (exp‘(i · ((2 / 3) · π))) = ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π)))))
6664, 65ax-mp 5 . . . 4 (exp‘(i · ((2 / 3) · π))) = ((cos‘((2 / 3) · π)) + (i · (sin‘((2 / 3) · π))))
6712, 60mulcli 11122 . . . . 5 (i · (√‘3)) ∈ ℂ
681, 67, 24, 25divdiri 11881 . . . 4 ((-1 + (i · (√‘3))) / 2) = ((-1 / 2) + ((i · (√‘3)) / 2))
6963, 66, 683eqtr4i 2762 . . 3 (exp‘(i · ((2 / 3) · π))) = ((-1 + (i · (√‘3))) / 2)
709, 17, 693eqtri 2756 . 2 (-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2)
71 1z 12505 . . . 4 1 ∈ ℤ
72 root1cj 26664 . . . 4 ((3 ∈ ℕ ∧ 1 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1↑𝑐(2 / 3))↑(3 − 1)))
734, 71, 72mp2an 692 . . 3 (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1↑𝑐(2 / 3))↑(3 − 1))
74 cxpcl 26581 . . . . . . . 8 ((-1 ∈ ℂ ∧ (2 / 3) ∈ ℂ) → (-1↑𝑐(2 / 3)) ∈ ℂ)
751, 7, 74mp2an 692 . . . . . . 7 (-1↑𝑐(2 / 3)) ∈ ℂ
76 exp1 13974 . . . . . . 7 ((-1↑𝑐(2 / 3)) ∈ ℂ → ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3)))
7775, 76ax-mp 5 . . . . . 6 ((-1↑𝑐(2 / 3))↑1) = (-1↑𝑐(2 / 3))
7877, 70eqtri 2752 . . . . 5 ((-1↑𝑐(2 / 3))↑1) = ((-1 + (i · (√‘3))) / 2)
7978fveq2i 6825 . . . 4 (∗‘((-1↑𝑐(2 / 3))↑1)) = (∗‘((-1 + (i · (√‘3))) / 2))
801, 67addcli 11121 . . . . . 6 (-1 + (i · (√‘3))) ∈ ℂ
8180, 24cjdivi 15098 . . . . 5 (2 ≠ 0 → (∗‘((-1 + (i · (√‘3))) / 2)) = ((∗‘(-1 + (i · (√‘3)))) / (∗‘2)))
8225, 81ax-mp 5 . . . 4 (∗‘((-1 + (i · (√‘3))) / 2)) = ((∗‘(-1 + (i · (√‘3)))) / (∗‘2))
831, 67cjaddi 15095 . . . . . 6 (∗‘(-1 + (i · (√‘3)))) = ((∗‘-1) + (∗‘(i · (√‘3))))
84 neg1rr 12114 . . . . . . . 8 -1 ∈ ℝ
85 cjre 15046 . . . . . . . 8 (-1 ∈ ℝ → (∗‘-1) = -1)
8684, 85ax-mp 5 . . . . . . 7 (∗‘-1) = -1
8712, 60cjmuli 15096 . . . . . . . 8 (∗‘(i · (√‘3))) = ((∗‘i) · (∗‘(√‘3)))
88 cji 15066 . . . . . . . . 9 (∗‘i) = -i
89 cjre 15046 . . . . . . . . . 10 ((√‘3) ∈ ℝ → (∗‘(√‘3)) = (√‘3))
9059, 89ax-mp 5 . . . . . . . . 9 (∗‘(√‘3)) = (√‘3)
9188, 90oveq12i 7361 . . . . . . . 8 ((∗‘i) · (∗‘(√‘3))) = (-i · (√‘3))
9212, 60mulneg1i 11566 . . . . . . . 8 (-i · (√‘3)) = -(i · (√‘3))
9387, 91, 923eqtri 2756 . . . . . . 7 (∗‘(i · (√‘3))) = -(i · (√‘3))
9486, 93oveq12i 7361 . . . . . 6 ((∗‘-1) + (∗‘(i · (√‘3)))) = (-1 + -(i · (√‘3)))
951, 67negsubi 11442 . . . . . 6 (-1 + -(i · (√‘3))) = (-1 − (i · (√‘3)))
9683, 94, 953eqtri 2756 . . . . 5 (∗‘(-1 + (i · (√‘3)))) = (-1 − (i · (√‘3)))
97 cjre 15046 . . . . . 6 (2 ∈ ℝ → (∗‘2) = 2)
983, 97ax-mp 5 . . . . 5 (∗‘2) = 2
9996, 98oveq12i 7361 . . . 4 ((∗‘(-1 + (i · (√‘3)))) / (∗‘2)) = ((-1 − (i · (√‘3))) / 2)
10079, 82, 993eqtri 2756 . . 3 (∗‘((-1↑𝑐(2 / 3))↑1)) = ((-1 − (i · (√‘3))) / 2)
101 3m1e2 12251 . . . 4 (3 − 1) = 2
102101oveq2i 7360 . . 3 ((-1↑𝑐(2 / 3))↑(3 − 1)) = ((-1↑𝑐(2 / 3))↑2)
10373, 100, 1023eqtr3ri 2761 . 2 ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)
10470, 103pm3.2i 470 1 ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  6c6 12187  cz 12471  cexp 13968  ccj 15003  csqrt 15140  expce 15968  sincsin 15970  cosccos 15971  πcpi 15973  logclog 26461  𝑐ccxp 26462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464
This theorem is referenced by:  1cubr  26750
  Copyright terms: Public domain W3C validator