MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12 Structured version   Visualization version   GIF version

Theorem mul12 11455
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
mul12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))

Proof of Theorem mul12
StepHypRef Expression
1 mulcom 11270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
21oveq1d 7463 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐵 · 𝐴) · 𝐶))
323adant3 1132 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐵 · 𝐴) · 𝐶))
4 mulass 11272 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
5 mulass 11272 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶)))
653com12 1123 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶)))
73, 4, 63eqtr3d 2788 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-mulcom 11248  ax-mulass 11250
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  mul02  11468  mul12i  11485  mul12d  11499  mulre  15170  sqreulem  15408  fsumcube  16108  demoivre  16248  demoivreALT  16249  dvdscmul  16331  dvdscmulr  16333  dvdstr  16342  ablfacrp  20110  nmoleub2lem3  25167  sinperlem  26540  coskpi  26583  sineq0  26584  efif1olem4  26605  rpvmasum2  27574  expgrowthi  44302
  Copyright terms: Public domain W3C validator