MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12 Structured version   Visualization version   GIF version

Theorem mul12 11299
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
mul12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))

Proof of Theorem mul12
StepHypRef Expression
1 mulcom 11114 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
21oveq1d 7368 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐵 · 𝐴) · 𝐶))
323adant3 1132 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐵 · 𝐴) · 𝐶))
4 mulass 11116 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
5 mulass 11116 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶)))
653com12 1123 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐴) · 𝐶) = (𝐵 · (𝐴 · 𝐶)))
73, 4, 63eqtr3d 2772 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026   · cmul 11033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-mulcom 11092  ax-mulass 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356
This theorem is referenced by:  mul02  11312  mul12i  11329  mul12d  11343  mulre  15046  sqreulem  15285  fsumcube  15985  demoivre  16127  demoivreALT  16128  dvdscmul  16211  dvdscmulr  16213  dvdstr  16223  ablfacrp  19965  nmoleub2lem3  25031  sinperlem  26405  coskpi  26448  sineq0  26449  efif1olem4  26470  rpvmasum2  27439  expgrowthi  44306
  Copyright terms: Public domain W3C validator