![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul12 | Structured version Visualization version GIF version |
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.) |
Ref | Expression |
---|---|
mul12 | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcom 11192 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) | |
2 | 1 | oveq1d 7420 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ต ยท ๐ด) ยท ๐ถ)) |
3 | 2 | 3adant3 1132 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ต ยท ๐ด) ยท ๐ถ)) |
4 | mulass 11194 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ))) | |
5 | mulass 11194 | . . 3 โข ((๐ต โ โ โง ๐ด โ โ โง ๐ถ โ โ) โ ((๐ต ยท ๐ด) ยท ๐ถ) = (๐ต ยท (๐ด ยท ๐ถ))) | |
6 | 5 | 3com12 1123 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ต ยท ๐ด) ยท ๐ถ) = (๐ต ยท (๐ด ยท ๐ถ))) |
7 | 3, 4, 6 | 3eqtr3d 2780 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 (class class class)co 7405 โcc 11104 ยท cmul 11111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-mulcom 11170 ax-mulass 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 |
This theorem is referenced by: mul02 11388 mul12i 11405 mul12d 11419 mulre 15064 sqreulem 15302 fsumcube 16000 demoivre 16139 demoivreALT 16140 dvdscmul 16222 dvdscmulr 16224 dvdstr 16233 ablfacrp 19930 nmoleub2lem3 24622 sinperlem 25981 coskpi 26023 sineq0 26024 efif1olem4 26045 rpvmasum2 27004 expgrowthi 43077 |
Copyright terms: Public domain | W3C validator |