MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  root1eq1 Structured version   Visualization version   GIF version

Theorem root1eq1 24786
Description: The only powers of an 𝑁-th root of unity that equal 1 are the multiples of 𝑁. In other words, -1↑𝑐(2 / 𝑁) has order 𝑁 in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
root1eq1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))

Proof of Theorem root1eq1
StepHypRef Expression
1 2re 11345 . . . . . . . 8 2 ∈ ℝ
2 simpl 474 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ)
3 nndivre 11312 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
41, 2, 3sylancr 581 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ)
54recnd 10321 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
6 ax-icn 10247 . . . . . . . 8 i ∈ ℂ
7 picn 24502 . . . . . . . 8 π ∈ ℂ
86, 7mulcli 10300 . . . . . . 7 (i · π) ∈ ℂ
98a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (i · π) ∈ ℂ)
105, 9mulcld 10313 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((2 / 𝑁) · (i · π)) ∈ ℂ)
11 efexp 15114 . . . . 5 ((((2 / 𝑁) · (i · π)) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
1210, 11sylancom 582 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
13 zcn 11628 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1413adantl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ)
15 nncn 11282 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 472 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
17 2cn 11346 . . . . . . . . 9 2 ∈ ℂ
1817a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 2 ∈ ℂ)
19 nnne0 11309 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019adantr 472 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ≠ 0)
2114, 16, 18, 20div32d 11077 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · 2) = (𝐾 · (2 / 𝑁)))
2221oveq1d 6856 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 · (2 / 𝑁)) · (i · π)))
2314, 16, 20divcld 11054 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾 / 𝑁) ∈ ℂ)
2423, 18, 9mulassd 10316 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 / 𝑁) · (2 · (i · π))))
2514, 5, 9mulassd 10316 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 · (2 / 𝑁)) · (i · π)) = (𝐾 · ((2 / 𝑁) · (i · π))))
2622, 24, 253eqtr3d 2806 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) = (𝐾 · ((2 / 𝑁) · (i · π))))
2726fveq2d 6378 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))))
28 neg1cn 11392 . . . . . . . 8 -1 ∈ ℂ
2928a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ)
30 neg1ne0 11394 . . . . . . . 8 -1 ≠ 0
3130a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0)
3229, 31, 5cxpefd 24748 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (log‘-1))))
33 logm1 24625 . . . . . . . 8 (log‘-1) = (i · π)
3433oveq2i 6852 . . . . . . 7 ((2 / 𝑁) · (log‘-1)) = ((2 / 𝑁) · (i · π))
3534fveq2i 6377 . . . . . 6 (exp‘((2 / 𝑁) · (log‘-1))) = (exp‘((2 / 𝑁) · (i · π)))
3632, 35syl6eq 2814 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (i · π))))
3736oveq1d 6856 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
3812, 27, 373eqtr4rd 2809 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = (exp‘((𝐾 / 𝑁) · (2 · (i · π)))))
3938eqeq1d 2766 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1))
4017, 8mulcli 10300 . . . 4 (2 · (i · π)) ∈ ℂ
41 mulcl 10272 . . . 4 (((𝐾 / 𝑁) ∈ ℂ ∧ (2 · (i · π)) ∈ ℂ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
4223, 40, 41sylancl 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
43 efeq1 24566 . . 3 (((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
4442, 43syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
456, 17, 7mul12i 10484 . . . . . 6 (i · (2 · π)) = (2 · (i · π))
4645oveq2i 6852 . . . . 5 (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π)))
4740a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ∈ ℂ)
48 2ne0 11382 . . . . . . . 8 2 ≠ 0
49 ine0 10718 . . . . . . . . 9 i ≠ 0
50 pire 24501 . . . . . . . . . 10 π ∈ ℝ
51 pipos 24503 . . . . . . . . . 10 0 < π
5250, 51gt0ne0ii 10817 . . . . . . . . 9 π ≠ 0
536, 7, 49, 52mulne0i 10923 . . . . . . . 8 (i · π) ≠ 0
5417, 8, 48, 53mulne0i 10923 . . . . . . 7 (2 · (i · π)) ≠ 0
5554a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ≠ 0)
5623, 47, 55divcan4d 11060 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π))) = (𝐾 / 𝑁))
5746, 56syl5eq 2810 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (𝐾 / 𝑁))
5857eleq1d 2828 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ (𝐾 / 𝑁) ∈ ℤ))
59 nnz 11645 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6059adantr 472 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
61 simpr 477 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
62 dvdsval2 15269 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6360, 20, 61, 62syl3anc 1490 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6458, 63bitr4d 273 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ 𝑁𝐾))
6539, 44, 643bitrd 296 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2936   class class class wbr 4808  cfv 6067  (class class class)co 6841  cc 10186  cr 10187  0cc0 10188  1c1 10189  ici 10190   · cmul 10193  -cneg 10520   / cdiv 10937  cn 11273  2c2 11326  cz 11623  cexp 13066  expce 15075  πcpi 15080  cdvds 15266  logclog 24591  𝑐ccxp 24592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266  ax-addf 10267  ax-mulf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-iin 4678  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-of 7094  df-om 7263  df-1st 7365  df-2nd 7366  df-supp 7497  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-ixp 8113  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fsupp 8482  df-fi 8523  df-sup 8554  df-inf 8555  df-oi 8621  df-card 9015  df-cda 9242  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-ioo 12380  df-ioc 12381  df-ico 12382  df-icc 12383  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14093  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-limsup 14488  df-clim 14505  df-rlim 14506  df-sum 14703  df-ef 15081  df-sin 15083  df-cos 15084  df-pi 15086  df-dvds 15267  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-plusg 16228  df-mulr 16229  df-starv 16230  df-sca 16231  df-vsca 16232  df-ip 16233  df-tset 16234  df-ple 16235  df-ds 16237  df-unif 16238  df-hom 16239  df-cco 16240  df-rest 16350  df-topn 16351  df-0g 16369  df-gsum 16370  df-topgen 16371  df-pt 16372  df-prds 16375  df-xrs 16429  df-qtop 16434  df-imas 16435  df-xps 16437  df-mre 16513  df-mrc 16514  df-acs 16516  df-mgm 17509  df-sgrp 17551  df-mnd 17562  df-submnd 17603  df-mulg 17809  df-cntz 18014  df-cmn 18460  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-fbas 20015  df-fg 20016  df-cnfld 20019  df-top 20977  df-topon 20994  df-topsp 21016  df-bases 21029  df-cld 21102  df-ntr 21103  df-cls 21104  df-nei 21181  df-lp 21219  df-perf 21220  df-cn 21310  df-cnp 21311  df-haus 21398  df-tx 21644  df-hmeo 21837  df-fil 21928  df-fm 22020  df-flim 22021  df-flf 22022  df-xms 22403  df-ms 22404  df-tms 22405  df-cncf 22959  df-limc 23920  df-dv 23921  df-log 24593  df-cxp 24594
This theorem is referenced by:  dchrptlem1  25279  dchrptlem2  25280
  Copyright terms: Public domain W3C validator