MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  root1eq1 Structured version   Visualization version   GIF version

Theorem root1eq1 26693
Description: The only powers of an 𝑁-th root of unity that equal 1 are the multiples of 𝑁. In other words, -1↑𝑐(2 / 𝑁) has order 𝑁 in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
root1eq1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))

Proof of Theorem root1eq1
StepHypRef Expression
1 2re 12206 . . . . . . . 8 2 ∈ ℝ
2 simpl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ)
3 nndivre 12173 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
41, 2, 3sylancr 587 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ)
54recnd 11147 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
6 ax-icn 11072 . . . . . . . 8 i ∈ ℂ
7 picn 26395 . . . . . . . 8 π ∈ ℂ
86, 7mulcli 11126 . . . . . . 7 (i · π) ∈ ℂ
98a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (i · π) ∈ ℂ)
105, 9mulcld 11139 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((2 / 𝑁) · (i · π)) ∈ ℂ)
11 efexp 16012 . . . . 5 ((((2 / 𝑁) · (i · π)) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
1210, 11sylancom 588 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
13 zcn 12480 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1413adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ)
15 nncn 12140 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
17 2cn 12207 . . . . . . . . 9 2 ∈ ℂ
1817a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 2 ∈ ℂ)
19 nnne0 12166 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ≠ 0)
2114, 16, 18, 20div32d 11927 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · 2) = (𝐾 · (2 / 𝑁)))
2221oveq1d 7367 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 · (2 / 𝑁)) · (i · π)))
2314, 16, 20divcld 11904 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾 / 𝑁) ∈ ℂ)
2423, 18, 9mulassd 11142 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 / 𝑁) · (2 · (i · π))))
2514, 5, 9mulassd 11142 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 · (2 / 𝑁)) · (i · π)) = (𝐾 · ((2 / 𝑁) · (i · π))))
2622, 24, 253eqtr3d 2776 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) = (𝐾 · ((2 / 𝑁) · (i · π))))
2726fveq2d 6832 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))))
28 neg1cn 12117 . . . . . . . 8 -1 ∈ ℂ
2928a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ)
30 neg1ne0 12119 . . . . . . . 8 -1 ≠ 0
3130a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0)
3229, 31, 5cxpefd 26649 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (log‘-1))))
33 logm1 26526 . . . . . . . 8 (log‘-1) = (i · π)
3433oveq2i 7363 . . . . . . 7 ((2 / 𝑁) · (log‘-1)) = ((2 / 𝑁) · (i · π))
3534fveq2i 6831 . . . . . 6 (exp‘((2 / 𝑁) · (log‘-1))) = (exp‘((2 / 𝑁) · (i · π)))
3632, 35eqtrdi 2784 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (i · π))))
3736oveq1d 7367 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
3812, 27, 373eqtr4rd 2779 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = (exp‘((𝐾 / 𝑁) · (2 · (i · π)))))
3938eqeq1d 2735 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1))
4017, 8mulcli 11126 . . . 4 (2 · (i · π)) ∈ ℂ
41 mulcl 11097 . . . 4 (((𝐾 / 𝑁) ∈ ℂ ∧ (2 · (i · π)) ∈ ℂ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
4223, 40, 41sylancl 586 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
43 efeq1 26465 . . 3 (((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
4442, 43syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
456, 17, 7mul12i 11315 . . . . . 6 (i · (2 · π)) = (2 · (i · π))
4645oveq2i 7363 . . . . 5 (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π)))
4740a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ∈ ℂ)
48 2ne0 12236 . . . . . . . 8 2 ≠ 0
49 ine0 11559 . . . . . . . . 9 i ≠ 0
50 pire 26394 . . . . . . . . . 10 π ∈ ℝ
51 pipos 26396 . . . . . . . . . 10 0 < π
5250, 51gt0ne0ii 11660 . . . . . . . . 9 π ≠ 0
536, 7, 49, 52mulne0i 11767 . . . . . . . 8 (i · π) ≠ 0
5417, 8, 48, 53mulne0i 11767 . . . . . . 7 (2 · (i · π)) ≠ 0
5554a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ≠ 0)
5623, 47, 55divcan4d 11910 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π))) = (𝐾 / 𝑁))
5746, 56eqtrid 2780 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (𝐾 / 𝑁))
5857eleq1d 2818 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ (𝐾 / 𝑁) ∈ ℤ))
59 nnz 12496 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6059adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
61 simpr 484 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
62 dvdsval2 16168 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6360, 20, 61, 62syl3anc 1373 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6458, 63bitr4d 282 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ 𝑁𝐾))
6539, 44, 643bitrd 305 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014  ici 11015   · cmul 11018  -cneg 11352   / cdiv 11781  cn 12132  2c2 12187  cz 12475  cexp 13970  expce 15970  πcpi 15975  cdvds 16165  logclog 26491  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-dvds 16166  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  dchrptlem1  27203  dchrptlem2  27204
  Copyright terms: Public domain W3C validator