MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpeq Structured version   Visualization version   GIF version

Theorem cxpeq 26714
Description: Solve an equation involving an 𝑁-th power. The expression -1↑𝑐(2 / 𝑁) = exp(2πi / 𝑁) is a way to write the primitive 𝑁-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpeq ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝑁

Proof of Theorem cxpeq
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝑁 ∈ ℕ)
2 nnm1nn0 12433 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ ℕ0)
4 nn0uz 12780 . . . . . . 7 0 = (ℤ‘0)
53, 4eleqtrdi 2843 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ (ℤ‘0))
6 eluzfz1 13438 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑁 − 1)))
75, 6syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 0 ∈ (0...(𝑁 − 1)))
8 neg1cn 12121 . . . . . . . . . 10 -1 ∈ ℂ
9 2re 12210 . . . . . . . . . . . 12 2 ∈ ℝ
10 simp2 1137 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℕ)
11 nndivre 12177 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
129, 10, 11sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℝ)
1312recnd 11151 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℂ)
14 cxpcl 26630 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
158, 13, 14sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1615adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
17 0nn0 12407 . . . . . . . 8 0 ∈ ℕ0
18 expcl 13993 . . . . . . . 8 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 0 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
1916, 17, 18sylancl 586 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
2019mul02d 11322 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0 · ((-1↑𝑐(2 / 𝑁))↑0)) = 0)
21 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = 0)
2221oveq1d 7370 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = (0↑𝑁))
23 simprr 772 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = 𝐵)
2410expd 14053 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑁) = 0)
2522, 23, 243eqtr3d 2776 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐵 = 0)
2625oveq1d 7370 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = (0↑𝑐(1 / 𝑁)))
27 nncn 12144 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
28 nnne0 12170 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
29 reccl 11794 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ∈ ℂ)
30 recne0 11800 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ≠ 0)
3129, 300cxpd 26666 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (0↑𝑐(1 / 𝑁)) = 0)
3227, 28, 31syl2anc 584 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑐(1 / 𝑁)) = 0)
331, 32syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑐(1 / 𝑁)) = 0)
3426, 33eqtrd 2768 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = 0)
3534oveq1d 7370 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)) = (0 · ((-1↑𝑐(2 / 𝑁))↑0)))
3620, 35, 213eqtr4rd 2779 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
37 oveq2 7363 . . . . . . 7 (𝑛 = 0 → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑0))
3837oveq2d 7371 . . . . . 6 (𝑛 = 0 → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
3938rspceeqv 3596 . . . . 5 ((0 ∈ (0...(𝑁 − 1)) ∧ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0))) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
407, 36, 39syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
4140expr 456 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 = 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
42 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
43 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
44 simpl2 1193 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ)
4544nnzd 12505 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℤ)
46 explog 26550 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4742, 43, 45, 46syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4847eqcomd 2739 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁))
4910nncnd 12152 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℂ)
5049adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℂ)
5142, 43logcld 26526 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
5250, 51mulcld 11143 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝑁 · (log‘𝐴)) ∈ ℂ)
5344nnnn0d 12453 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
5442, 53expcld 14060 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ∈ ℂ)
5542, 43, 45expne0d 14066 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ≠ 0)
56 eflogeq 26558 . . . . . . 7 (((𝑁 · (log‘𝐴)) ∈ ℂ ∧ (𝐴𝑁) ∈ ℂ ∧ (𝐴𝑁) ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5752, 54, 55, 56syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5848, 57mpbid 232 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)))
5954, 55logcld 26526 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘(𝐴𝑁)) ∈ ℂ)
6059adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘(𝐴𝑁)) ∈ ℂ)
61 ax-icn 11076 . . . . . . . . . . 11 i ∈ ℂ
62 2cn 12211 . . . . . . . . . . . 12 2 ∈ ℂ
63 picn 26414 . . . . . . . . . . . 12 π ∈ ℂ
6462, 63mulcli 11130 . . . . . . . . . . 11 (2 · π) ∈ ℂ
6561, 64mulcli 11130 . . . . . . . . . 10 (i · (2 · π)) ∈ ℂ
66 zcn 12484 . . . . . . . . . . 11 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
6766adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
68 mulcl 11101 . . . . . . . . . 10 (((i · (2 · π)) ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
6965, 67, 68sylancr 587 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
7060, 69addcld 11142 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) ∈ ℂ)
7150adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℂ)
7251adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘𝐴) ∈ ℂ)
7310nnne0d 12186 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ≠ 0)
7473ad2antrr 726 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ≠ 0)
7570, 71, 72, 74divmuld 11930 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) ↔ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
76 fveq2 6831 . . . . . . . 8 ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)))
7771, 74reccld 11901 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1 / 𝑁) ∈ ℂ)
7877, 60mulcld 11143 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ)
7913ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
8079, 67mulcld 11143 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 / 𝑁) · 𝑚) ∈ ℂ)
8161, 63mulcli 11130 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
82 mulcl 11101 . . . . . . . . . . . . 13 ((((2 / 𝑁) · 𝑚) ∈ ℂ ∧ (i · π) ∈ ℂ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
8380, 81, 82sylancl 586 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
84 efadd 16008 . . . . . . . . . . . 12 ((((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ ∧ (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8578, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8660, 69, 71, 74divdird 11946 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)))
8760, 71, 74divrec2d 11912 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) / 𝑁) = ((1 / 𝑁) · (log‘(𝐴𝑁))))
8865a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · (2 · π)) ∈ ℂ)
8988, 67, 71, 74div23d 11945 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((i · (2 · π)) / 𝑁) · 𝑚))
9061, 62, 63mul12i 11319 . . . . . . . . . . . . . . . . . 18 (i · (2 · π)) = (2 · (i · π))
9190oveq1i 7365 . . . . . . . . . . . . . . . . 17 ((i · (2 · π)) / 𝑁) = ((2 · (i · π)) / 𝑁)
9262a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
9381a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · π) ∈ ℂ)
9492, 93, 71, 74div23d 11945 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 · (i · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9591, 94eqtrid 2780 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9695oveq1d 7370 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) / 𝑁) · 𝑚) = (((2 / 𝑁) · (i · π)) · 𝑚))
9779, 93, 67mul32d 11334 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · (i · π)) · 𝑚) = (((2 / 𝑁) · 𝑚) · (i · π)))
9889, 96, 973eqtrd 2772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((2 / 𝑁) · 𝑚) · (i · π)))
9987, 98oveq12d 7373 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
10086, 99eqtrd 2768 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
101100fveq2d 6835 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))))
10254adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
10355adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ≠ 0)
104102, 103, 77cxpefd 26668 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))))
1058a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ∈ ℂ)
106 neg1ne0 12123 . . . . . . . . . . . . . . 15 -1 ≠ 0
107106a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ≠ 0)
108 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
109105, 107, 79, 108cxpmul2zd 26672 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = ((-1↑𝑐(2 / 𝑁))↑𝑚))
110105, 107, 80cxpefd 26668 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))))
111 logm1 26545 . . . . . . . . . . . . . . . 16 (log‘-1) = (i · π)
112111oveq2i 7366 . . . . . . . . . . . . . . 15 (((2 / 𝑁) · 𝑚) · (log‘-1)) = (((2 / 𝑁) · 𝑚) · (i · π))
113112fveq2i 6834 . . . . . . . . . . . . . 14 (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))
114110, 113eqtrdi 2784 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
115105, 79cxpcld 26664 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1168a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ∈ ℂ)
117106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ≠ 0)
118116, 117, 13cxpne0d 26669 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
119118ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
120115, 119, 108expclzd 14065 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) ∈ ℂ)
12144adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
122108, 121zmodcld 13803 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℕ0)
123115, 122expcld 14060 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ∈ ℂ)
124122nn0zd 12504 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℤ)
125115, 119, 124expne0d 14066 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ≠ 0)
126115, 119, 124, 108expsubd 14071 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
127121nnzd 12505 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
128 zre 12483 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
129121nnrpd 12938 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℝ+)
130 moddifz 13794 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
131128, 129, 130syl2an2 686 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
132 expmulz 14022 . . . . . . . . . . . . . . . . 17 ((((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0) ∧ (𝑁 ∈ ℤ ∧ ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
133115, 119, 127, 131, 132syl22anc 838 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
134122nn0cnd 12455 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℂ)
13567, 134subcld 11483 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 − (𝑚 mod 𝑁)) ∈ ℂ)
136135, 71, 74divcan2d 11910 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (𝑚 − (𝑚 mod 𝑁)))
137136oveq2d 7371 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))))
138 root1id 26711 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
139121, 138syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
140139oveq1d 7370 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
141 1exp 14005 . . . . . . . . . . . . . . . . . 18 (((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
142131, 141syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
143140, 142eqtrd 2768 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
144133, 137, 1433eqtr3d 2776 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = 1)
145126, 144eqtr3d 2770 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 1)
146120, 123, 125, 145diveq1d 11916 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
147109, 114, 1463eqtr3rd 2777 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
148104, 147oveq12d 7373 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
14985, 101, 1483eqtr4d 2778 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
150 eflog 26532 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
15142, 43, 150syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
152151adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(log‘𝐴)) = 𝐴)
153149, 152eqeq12d 2749 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
154 zmodfz 13804 . . . . . . . . . . 11 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
155108, 121, 154syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
156 eqcom 2740 . . . . . . . . . . . . 13 (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴)
157 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 mod 𝑁) → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
158157oveq2d 7371 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 mod 𝑁) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
159158eqeq1d 2735 . . . . . . . . . . . . 13 (𝑛 = (𝑚 mod 𝑁) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴 ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
160156, 159bitrid 283 . . . . . . . . . . . 12 (𝑛 = (𝑚 mod 𝑁) → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
161160rspcev 3573 . . . . . . . . . . 11 (((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) ∧ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
162161ex 412 . . . . . . . . . 10 ((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
163155, 162syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
164153, 163sylbid 240 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16576, 164syl5 34 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16675, 165sylbird 260 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
167166rexlimdva 3134 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16858, 167mpd 15 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
169 oveq1 7362 . . . . . . 7 ((𝐴𝑁) = 𝐵 → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (𝐵𝑐(1 / 𝑁)))
170169oveq1d 7370 . . . . . 6 ((𝐴𝑁) = 𝐵 → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
171170eqeq2d 2744 . . . . 5 ((𝐴𝑁) = 𝐵 → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
172171rexbidv 3157 . . . 4 ((𝐴𝑁) = 𝐵 → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
173168, 172syl5ibcom 245 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
17441, 173pm2.61dane 3016 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
175 simp3 1138 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
176 nnrecre 12178 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
1771763ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℝ)
178177recnd 11151 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℂ)
179175, 178cxpcld 26664 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
180179adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
181 elfznn0 13527 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0)
182 expcl 13993 . . . . . . 7 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18315, 181, 182syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18410adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ)
185184nnnn0d 12453 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
186180, 183, 185mulexpd 14075 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)))
187175adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝐵 ∈ ℂ)
188 cxproot 26646 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
189187, 184, 188syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
190181adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℕ0)
191190nn0cnd 12455 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℂ)
192184nncnd 12152 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℂ)
193191, 192mulcomd 11144 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝑛 · 𝑁) = (𝑁 · 𝑛))
194193oveq2d 7371 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)))
19515adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
196195, 185, 190expmuld 14063 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁))
197195, 190, 185expmuld 14063 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
198194, 196, 1973eqtr3d 2776 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
199184, 138syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
200199oveq1d 7370 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛) = (1↑𝑛))
201 elfzelz 13431 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℤ)
202201adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℤ)
203 1exp 14005 . . . . . . . 8 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
204202, 203syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (1↑𝑛) = 1)
205198, 200, 2043eqtrd 2772 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = 1)
206189, 205oveq12d 7373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)) = (𝐵 · 1))
207187mulridd 11140 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵 · 1) = 𝐵)
208186, 206, 2073eqtrd 2772 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵)
209 oveq1 7362 . . . . 5 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁))
210209eqeq1d 2735 . . . 4 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → ((𝐴𝑁) = 𝐵 ↔ (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵))
211208, 210syl5ibrcom 247 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
212211rexlimdva 3134 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
213174, 212impbid 212 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018  ici 11019   + caddc 11020   · cmul 11022  cmin 11355  -cneg 11356   / cdiv 11785  cn 12136  2c2 12191  0cn0 12392  cz 12479  cuz 12742  +crp 12896  ...cfz 13414   mod cmo 13780  cexp 13975  expce 15975  πcpi 15980  logclog 26510  𝑐ccxp 26511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512  df-cxp 26513
This theorem is referenced by:  1cubr  26799
  Copyright terms: Public domain W3C validator