MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpeq Structured version   Visualization version   GIF version

Theorem cxpeq 25919
Description: Solve an equation involving an 𝑁-th power. The expression -1↑𝑐(2 / 𝑁) = exp(2πi / 𝑁) is a way to write the primitive 𝑁-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpeq ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝑁

Proof of Theorem cxpeq
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1191 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝑁 ∈ ℕ)
2 nnm1nn0 12283 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ ℕ0)
4 nn0uz 12629 . . . . . . 7 0 = (ℤ‘0)
53, 4eleqtrdi 2850 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ (ℤ‘0))
6 eluzfz1 13272 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑁 − 1)))
75, 6syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 0 ∈ (0...(𝑁 − 1)))
8 neg1cn 12096 . . . . . . . . . 10 -1 ∈ ℂ
9 2re 12056 . . . . . . . . . . . 12 2 ∈ ℝ
10 simp2 1136 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℕ)
11 nndivre 12023 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
129, 10, 11sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℝ)
1312recnd 11012 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℂ)
14 cxpcl 25838 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
158, 13, 14sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1615adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
17 0nn0 12257 . . . . . . . 8 0 ∈ ℕ0
18 expcl 13809 . . . . . . . 8 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 0 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
1916, 17, 18sylancl 586 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
2019mul02d 11182 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0 · ((-1↑𝑐(2 / 𝑁))↑0)) = 0)
21 simprl 768 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = 0)
2221oveq1d 7299 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = (0↑𝑁))
23 simprr 770 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = 𝐵)
2410expd 13866 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑁) = 0)
2522, 23, 243eqtr3d 2787 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐵 = 0)
2625oveq1d 7299 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = (0↑𝑐(1 / 𝑁)))
27 nncn 11990 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
28 nnne0 12016 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
29 reccl 11649 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ∈ ℂ)
30 recne0 11655 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ≠ 0)
3129, 300cxpd 25874 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (0↑𝑐(1 / 𝑁)) = 0)
3227, 28, 31syl2anc 584 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑐(1 / 𝑁)) = 0)
331, 32syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑐(1 / 𝑁)) = 0)
3426, 33eqtrd 2779 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = 0)
3534oveq1d 7299 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)) = (0 · ((-1↑𝑐(2 / 𝑁))↑0)))
3620, 35, 213eqtr4rd 2790 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
37 oveq2 7292 . . . . . . 7 (𝑛 = 0 → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑0))
3837oveq2d 7300 . . . . . 6 (𝑛 = 0 → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
3938rspceeqv 3576 . . . . 5 ((0 ∈ (0...(𝑁 − 1)) ∧ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0))) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
407, 36, 39syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
4140expr 457 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 = 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
42 simpl1 1190 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
43 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
44 simpl2 1191 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ)
4544nnzd 12434 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℤ)
46 explog 25758 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4742, 43, 45, 46syl3anc 1370 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4847eqcomd 2745 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁))
4910nncnd 11998 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℂ)
5049adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℂ)
5142, 43logcld 25735 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
5250, 51mulcld 11004 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝑁 · (log‘𝐴)) ∈ ℂ)
5344nnnn0d 12302 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
5442, 53expcld 13873 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ∈ ℂ)
5542, 43, 45expne0d 13879 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ≠ 0)
56 eflogeq 25766 . . . . . . 7 (((𝑁 · (log‘𝐴)) ∈ ℂ ∧ (𝐴𝑁) ∈ ℂ ∧ (𝐴𝑁) ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5752, 54, 55, 56syl3anc 1370 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5848, 57mpbid 231 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)))
5954, 55logcld 25735 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘(𝐴𝑁)) ∈ ℂ)
6059adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘(𝐴𝑁)) ∈ ℂ)
61 ax-icn 10939 . . . . . . . . . . 11 i ∈ ℂ
62 2cn 12057 . . . . . . . . . . . 12 2 ∈ ℂ
63 picn 25625 . . . . . . . . . . . 12 π ∈ ℂ
6462, 63mulcli 10991 . . . . . . . . . . 11 (2 · π) ∈ ℂ
6561, 64mulcli 10991 . . . . . . . . . 10 (i · (2 · π)) ∈ ℂ
66 zcn 12333 . . . . . . . . . . 11 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
6766adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
68 mulcl 10964 . . . . . . . . . 10 (((i · (2 · π)) ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
6965, 67, 68sylancr 587 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
7060, 69addcld 11003 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) ∈ ℂ)
7150adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℂ)
7251adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘𝐴) ∈ ℂ)
7310nnne0d 12032 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ≠ 0)
7473ad2antrr 723 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ≠ 0)
7570, 71, 72, 74divmuld 11782 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) ↔ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
76 fveq2 6783 . . . . . . . 8 ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)))
7771, 74reccld 11753 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1 / 𝑁) ∈ ℂ)
7877, 60mulcld 11004 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ)
7913ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
8079, 67mulcld 11004 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 / 𝑁) · 𝑚) ∈ ℂ)
8161, 63mulcli 10991 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
82 mulcl 10964 . . . . . . . . . . . . 13 ((((2 / 𝑁) · 𝑚) ∈ ℂ ∧ (i · π) ∈ ℂ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
8380, 81, 82sylancl 586 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
84 efadd 15812 . . . . . . . . . . . 12 ((((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ ∧ (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8578, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8660, 69, 71, 74divdird 11798 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)))
8760, 71, 74divrec2d 11764 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) / 𝑁) = ((1 / 𝑁) · (log‘(𝐴𝑁))))
8865a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · (2 · π)) ∈ ℂ)
8988, 67, 71, 74div23d 11797 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((i · (2 · π)) / 𝑁) · 𝑚))
9061, 62, 63mul12i 11179 . . . . . . . . . . . . . . . . . 18 (i · (2 · π)) = (2 · (i · π))
9190oveq1i 7294 . . . . . . . . . . . . . . . . 17 ((i · (2 · π)) / 𝑁) = ((2 · (i · π)) / 𝑁)
9262a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
9381a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · π) ∈ ℂ)
9492, 93, 71, 74div23d 11797 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 · (i · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9591, 94eqtrid 2791 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9695oveq1d 7299 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) / 𝑁) · 𝑚) = (((2 / 𝑁) · (i · π)) · 𝑚))
9779, 93, 67mul32d 11194 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · (i · π)) · 𝑚) = (((2 / 𝑁) · 𝑚) · (i · π)))
9889, 96, 973eqtrd 2783 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((2 / 𝑁) · 𝑚) · (i · π)))
9987, 98oveq12d 7302 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
10086, 99eqtrd 2779 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
101100fveq2d 6787 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))))
10254adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
10355adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ≠ 0)
104102, 103, 77cxpefd 25876 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))))
1058a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ∈ ℂ)
106 neg1ne0 12098 . . . . . . . . . . . . . . 15 -1 ≠ 0
107106a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ≠ 0)
108 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
109105, 107, 79, 108cxpmul2zd 25880 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = ((-1↑𝑐(2 / 𝑁))↑𝑚))
110105, 107, 80cxpefd 25876 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))))
111 logm1 25753 . . . . . . . . . . . . . . . 16 (log‘-1) = (i · π)
112111oveq2i 7295 . . . . . . . . . . . . . . 15 (((2 / 𝑁) · 𝑚) · (log‘-1)) = (((2 / 𝑁) · 𝑚) · (i · π))
113112fveq2i 6786 . . . . . . . . . . . . . 14 (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))
114110, 113eqtrdi 2795 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
115105, 79cxpcld 25872 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1168a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ∈ ℂ)
117106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ≠ 0)
118116, 117, 13cxpne0d 25877 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
119118ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
120115, 119, 108expclzd 13878 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) ∈ ℂ)
12144adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
122108, 121zmodcld 13621 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℕ0)
123115, 122expcld 13873 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ∈ ℂ)
124122nn0zd 12433 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℤ)
125115, 119, 124expne0d 13879 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ≠ 0)
126115, 119, 124, 108expsubd 13884 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
127121nnzd 12434 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
128 zre 12332 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
129121nnrpd 12779 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℝ+)
130 moddifz 13612 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
131128, 129, 130syl2an2 683 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
132 expmulz 13838 . . . . . . . . . . . . . . . . 17 ((((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0) ∧ (𝑁 ∈ ℤ ∧ ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
133115, 119, 127, 131, 132syl22anc 836 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
134122nn0cnd 12304 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℂ)
13567, 134subcld 11341 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 − (𝑚 mod 𝑁)) ∈ ℂ)
136135, 71, 74divcan2d 11762 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (𝑚 − (𝑚 mod 𝑁)))
137136oveq2d 7300 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))))
138 root1id 25916 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
139121, 138syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
140139oveq1d 7299 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
141 1exp 13821 . . . . . . . . . . . . . . . . . 18 (((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
142131, 141syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
143140, 142eqtrd 2779 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
144133, 137, 1433eqtr3d 2787 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = 1)
145126, 144eqtr3d 2781 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 1)
146120, 123, 125, 145diveq1d 11768 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
147109, 114, 1463eqtr3rd 2788 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
148104, 147oveq12d 7302 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
14985, 101, 1483eqtr4d 2789 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
150 eflog 25741 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
15142, 43, 150syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
152151adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(log‘𝐴)) = 𝐴)
153149, 152eqeq12d 2755 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
154 zmodfz 13622 . . . . . . . . . . 11 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
155108, 121, 154syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
156 eqcom 2746 . . . . . . . . . . . . 13 (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴)
157 oveq2 7292 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 mod 𝑁) → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
158157oveq2d 7300 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 mod 𝑁) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
159158eqeq1d 2741 . . . . . . . . . . . . 13 (𝑛 = (𝑚 mod 𝑁) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴 ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
160156, 159bitrid 282 . . . . . . . . . . . 12 (𝑛 = (𝑚 mod 𝑁) → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
161160rspcev 3562 . . . . . . . . . . 11 (((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) ∧ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
162161ex 413 . . . . . . . . . 10 ((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
163155, 162syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
164153, 163sylbid 239 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16576, 164syl5 34 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16675, 165sylbird 259 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
167166rexlimdva 3214 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16858, 167mpd 15 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
169 oveq1 7291 . . . . . . 7 ((𝐴𝑁) = 𝐵 → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (𝐵𝑐(1 / 𝑁)))
170169oveq1d 7299 . . . . . 6 ((𝐴𝑁) = 𝐵 → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
171170eqeq2d 2750 . . . . 5 ((𝐴𝑁) = 𝐵 → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
172171rexbidv 3227 . . . 4 ((𝐴𝑁) = 𝐵 → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
173168, 172syl5ibcom 244 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
17441, 173pm2.61dane 3033 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
175 simp3 1137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
176 nnrecre 12024 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
1771763ad2ant2 1133 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℝ)
178177recnd 11012 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℂ)
179175, 178cxpcld 25872 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
180179adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
181 elfznn0 13358 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0)
182 expcl 13809 . . . . . . 7 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18315, 181, 182syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18410adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ)
185184nnnn0d 12302 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
186180, 183, 185mulexpd 13888 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)))
187175adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝐵 ∈ ℂ)
188 cxproot 25854 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
189187, 184, 188syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
190181adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℕ0)
191190nn0cnd 12304 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℂ)
192184nncnd 11998 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℂ)
193191, 192mulcomd 11005 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝑛 · 𝑁) = (𝑁 · 𝑛))
194193oveq2d 7300 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)))
19515adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
196195, 185, 190expmuld 13876 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁))
197195, 190, 185expmuld 13876 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
198194, 196, 1973eqtr3d 2787 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
199184, 138syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
200199oveq1d 7299 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛) = (1↑𝑛))
201 elfzelz 13265 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℤ)
202201adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℤ)
203 1exp 13821 . . . . . . . 8 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
204202, 203syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (1↑𝑛) = 1)
205198, 200, 2043eqtrd 2783 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = 1)
206189, 205oveq12d 7302 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)) = (𝐵 · 1))
207187mulid1d 11001 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵 · 1) = 𝐵)
208186, 206, 2073eqtrd 2783 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵)
209 oveq1 7291 . . . . 5 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁))
210209eqeq1d 2741 . . . 4 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → ((𝐴𝑁) = 𝐵 ↔ (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵))
211208, 210syl5ibrcom 246 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
212211rexlimdva 3214 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
213174, 212impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wrex 3066  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881  ici 10882   + caddc 10883   · cmul 10885  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  2c2 12037  0cn0 12242  cz 12328  cuz 12591  +crp 12739  ...cfz 13248   mod cmo 13598  cexp 13791  expce 15780  πcpi 15785  logclog 25719  𝑐ccxp 25720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721  df-cxp 25722
This theorem is referenced by:  1cubr  26001
  Copyright terms: Public domain W3C validator