MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpeq Structured version   Visualization version   GIF version

Theorem cxpeq 25007
Description: Solve an equation involving an 𝑁-th power. The expression -1↑𝑐(2 / 𝑁) = exp(2πi / 𝑁) is a way to write the primitive 𝑁-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpeq ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝑁

Proof of Theorem cxpeq
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1183 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝑁 ∈ ℕ)
2 nnm1nn0 11775 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ ℕ0)
4 nn0uz 12118 . . . . . . 7 0 = (ℤ‘0)
53, 4syl6eleq 2891 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ (ℤ‘0))
6 eluzfz1 12753 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑁 − 1)))
75, 6syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 0 ∈ (0...(𝑁 − 1)))
8 neg1cn 11588 . . . . . . . . . 10 -1 ∈ ℂ
9 2re 11548 . . . . . . . . . . . 12 2 ∈ ℝ
10 simp2 1128 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℕ)
11 nndivre 11515 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
129, 10, 11sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℝ)
1312recnd 10504 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℂ)
14 cxpcl 24926 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
158, 13, 14sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1615adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
17 0nn0 11749 . . . . . . . 8 0 ∈ ℕ0
18 expcl 13285 . . . . . . . 8 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 0 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
1916, 17, 18sylancl 586 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
2019mul02d 10674 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0 · ((-1↑𝑐(2 / 𝑁))↑0)) = 0)
21 simprl 767 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = 0)
2221oveq1d 7022 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = (0↑𝑁))
23 simprr 769 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = 𝐵)
2410expd 13341 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑁) = 0)
2522, 23, 243eqtr3d 2837 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐵 = 0)
2625oveq1d 7022 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = (0↑𝑐(1 / 𝑁)))
27 nncn 11483 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
28 nnne0 11508 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
29 reccl 11142 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ∈ ℂ)
30 recne0 11148 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ≠ 0)
3129, 300cxpd 24962 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (0↑𝑐(1 / 𝑁)) = 0)
3227, 28, 31syl2anc 584 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑐(1 / 𝑁)) = 0)
331, 32syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑐(1 / 𝑁)) = 0)
3426, 33eqtrd 2829 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = 0)
3534oveq1d 7022 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)) = (0 · ((-1↑𝑐(2 / 𝑁))↑0)))
3620, 35, 213eqtr4rd 2840 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
37 oveq2 7015 . . . . . . 7 (𝑛 = 0 → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑0))
3837oveq2d 7023 . . . . . 6 (𝑛 = 0 → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
3938rspceeqv 3572 . . . . 5 ((0 ∈ (0...(𝑁 − 1)) ∧ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0))) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
407, 36, 39syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
4140expr 457 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 = 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
42 simpl1 1182 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
43 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
44 simpl2 1183 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ)
4544nnzd 11924 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℤ)
46 explog 24846 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4742, 43, 45, 46syl3anc 1362 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4847eqcomd 2799 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁))
4910nncnd 11491 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℂ)
5049adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℂ)
5142, 43logcld 24823 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
5250, 51mulcld 10496 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝑁 · (log‘𝐴)) ∈ ℂ)
5344nnnn0d 11792 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
5442, 53expcld 13348 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ∈ ℂ)
5542, 43, 45expne0d 13354 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ≠ 0)
56 eflogeq 24854 . . . . . . 7 (((𝑁 · (log‘𝐴)) ∈ ℂ ∧ (𝐴𝑁) ∈ ℂ ∧ (𝐴𝑁) ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5752, 54, 55, 56syl3anc 1362 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5848, 57mpbid 233 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)))
5954, 55logcld 24823 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘(𝐴𝑁)) ∈ ℂ)
6059adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘(𝐴𝑁)) ∈ ℂ)
61 ax-icn 10431 . . . . . . . . . . 11 i ∈ ℂ
62 2cn 11549 . . . . . . . . . . . 12 2 ∈ ℂ
63 picn 24716 . . . . . . . . . . . 12 π ∈ ℂ
6462, 63mulcli 10483 . . . . . . . . . . 11 (2 · π) ∈ ℂ
6561, 64mulcli 10483 . . . . . . . . . 10 (i · (2 · π)) ∈ ℂ
66 zcn 11823 . . . . . . . . . . 11 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
6766adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
68 mulcl 10456 . . . . . . . . . 10 (((i · (2 · π)) ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
6965, 67, 68sylancr 587 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
7060, 69addcld 10495 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) ∈ ℂ)
7150adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℂ)
7251adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘𝐴) ∈ ℂ)
7310nnne0d 11524 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ≠ 0)
7473ad2antrr 722 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ≠ 0)
7570, 71, 72, 74divmuld 11275 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) ↔ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
76 fveq2 6530 . . . . . . . 8 ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)))
7771, 74reccld 11246 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1 / 𝑁) ∈ ℂ)
7877, 60mulcld 10496 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ)
7913ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
8079, 67mulcld 10496 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 / 𝑁) · 𝑚) ∈ ℂ)
8161, 63mulcli 10483 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
82 mulcl 10456 . . . . . . . . . . . . 13 ((((2 / 𝑁) · 𝑚) ∈ ℂ ∧ (i · π) ∈ ℂ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
8380, 81, 82sylancl 586 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
84 efadd 15268 . . . . . . . . . . . 12 ((((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ ∧ (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8578, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8660, 69, 71, 74divdird 11291 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)))
8760, 71, 74divrec2d 11257 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) / 𝑁) = ((1 / 𝑁) · (log‘(𝐴𝑁))))
8865a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · (2 · π)) ∈ ℂ)
8988, 67, 71, 74div23d 11290 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((i · (2 · π)) / 𝑁) · 𝑚))
9061, 62, 63mul12i 10671 . . . . . . . . . . . . . . . . . 18 (i · (2 · π)) = (2 · (i · π))
9190oveq1i 7017 . . . . . . . . . . . . . . . . 17 ((i · (2 · π)) / 𝑁) = ((2 · (i · π)) / 𝑁)
9262a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
9381a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · π) ∈ ℂ)
9492, 93, 71, 74div23d 11290 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 · (i · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9591, 94syl5eq 2841 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9695oveq1d 7022 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) / 𝑁) · 𝑚) = (((2 / 𝑁) · (i · π)) · 𝑚))
9779, 93, 67mul32d 10686 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · (i · π)) · 𝑚) = (((2 / 𝑁) · 𝑚) · (i · π)))
9889, 96, 973eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((2 / 𝑁) · 𝑚) · (i · π)))
9987, 98oveq12d 7025 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
10086, 99eqtrd 2829 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
101100fveq2d 6534 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))))
10254adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
10355adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ≠ 0)
104102, 103, 77cxpefd 24964 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))))
1058a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ∈ ℂ)
106 neg1ne0 11590 . . . . . . . . . . . . . . 15 -1 ≠ 0
107106a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ≠ 0)
108 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
109105, 107, 79, 108cxpmul2zd 24968 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = ((-1↑𝑐(2 / 𝑁))↑𝑚))
110105, 107, 80cxpefd 24964 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))))
111 logm1 24841 . . . . . . . . . . . . . . . 16 (log‘-1) = (i · π)
112111oveq2i 7018 . . . . . . . . . . . . . . 15 (((2 / 𝑁) · 𝑚) · (log‘-1)) = (((2 / 𝑁) · 𝑚) · (i · π))
113112fveq2i 6533 . . . . . . . . . . . . . 14 (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))
114110, 113syl6eq 2845 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
115105, 79cxpcld 24960 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1168a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ∈ ℂ)
117106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ≠ 0)
118116, 117, 13cxpne0d 24965 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
119118ad2antrr 722 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
120115, 119, 108expclzd 13353 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) ∈ ℂ)
12144adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
122108, 121zmodcld 13098 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℕ0)
123115, 122expcld 13348 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ∈ ℂ)
124122nn0zd 11923 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℤ)
125115, 119, 124expne0d 13354 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ≠ 0)
126115, 119, 124, 108expsubd 13359 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
127121nnzd 11924 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
128 zre 11822 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
129121nnrpd 12268 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℝ+)
130 moddifz 13089 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
131128, 129, 130syl2an2 682 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
132 expmulz 13313 . . . . . . . . . . . . . . . . 17 ((((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0) ∧ (𝑁 ∈ ℤ ∧ ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
133115, 119, 127, 131, 132syl22anc 835 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
134122nn0cnd 11794 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℂ)
13567, 134subcld 10834 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 − (𝑚 mod 𝑁)) ∈ ℂ)
136135, 71, 74divcan2d 11255 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (𝑚 − (𝑚 mod 𝑁)))
137136oveq2d 7023 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))))
138 root1id 25004 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
139121, 138syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
140139oveq1d 7022 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
141 1exp 13296 . . . . . . . . . . . . . . . . . 18 (((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
142131, 141syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
143140, 142eqtrd 2829 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
144133, 137, 1433eqtr3d 2837 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = 1)
145126, 144eqtr3d 2831 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 1)
146120, 123, 125, 145diveq1d 11261 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
147109, 114, 1463eqtr3rd 2838 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
148104, 147oveq12d 7025 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
14985, 101, 1483eqtr4d 2839 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
150 eflog 24829 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
15142, 43, 150syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
152151adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(log‘𝐴)) = 𝐴)
153149, 152eqeq12d 2808 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
154 zmodfz 13099 . . . . . . . . . . 11 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
155108, 121, 154syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
156 eqcom 2800 . . . . . . . . . . . . 13 (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴)
157 oveq2 7015 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 mod 𝑁) → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
158157oveq2d 7023 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 mod 𝑁) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
159158eqeq1d 2795 . . . . . . . . . . . . 13 (𝑛 = (𝑚 mod 𝑁) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴 ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
160156, 159syl5bb 284 . . . . . . . . . . . 12 (𝑛 = (𝑚 mod 𝑁) → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
161160rspcev 3554 . . . . . . . . . . 11 (((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) ∧ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
162161ex 413 . . . . . . . . . 10 ((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
163155, 162syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
164153, 163sylbid 241 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16576, 164syl5 34 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16675, 165sylbird 261 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
167166rexlimdva 3244 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16858, 167mpd 15 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
169 oveq1 7014 . . . . . . 7 ((𝐴𝑁) = 𝐵 → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (𝐵𝑐(1 / 𝑁)))
170169oveq1d 7022 . . . . . 6 ((𝐴𝑁) = 𝐵 → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
171170eqeq2d 2803 . . . . 5 ((𝐴𝑁) = 𝐵 → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
172171rexbidv 3257 . . . 4 ((𝐴𝑁) = 𝐵 → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
173168, 172syl5ibcom 246 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
17441, 173pm2.61dane 3070 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
175 simp3 1129 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
176 nnrecre 11516 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
1771763ad2ant2 1125 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℝ)
178177recnd 10504 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℂ)
179175, 178cxpcld 24960 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
180179adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
181 elfznn0 12839 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0)
182 expcl 13285 . . . . . . 7 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18315, 181, 182syl2an 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18410adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ)
185184nnnn0d 11792 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
186180, 183, 185mulexpd 13363 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)))
187175adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝐵 ∈ ℂ)
188 cxproot 24942 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
189187, 184, 188syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
190181adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℕ0)
191190nn0cnd 11794 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℂ)
192184nncnd 11491 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℂ)
193191, 192mulcomd 10497 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝑛 · 𝑁) = (𝑁 · 𝑛))
194193oveq2d 7023 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)))
19515adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
196195, 185, 190expmuld 13351 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁))
197195, 190, 185expmuld 13351 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
198194, 196, 1973eqtr3d 2837 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
199184, 138syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
200199oveq1d 7022 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛) = (1↑𝑛))
201 elfzelz 12747 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℤ)
202201adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℤ)
203 1exp 13296 . . . . . . . 8 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
204202, 203syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (1↑𝑛) = 1)
205198, 200, 2043eqtrd 2833 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = 1)
206189, 205oveq12d 7025 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)) = (𝐵 · 1))
207187mulid1d 10493 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵 · 1) = 𝐵)
208186, 206, 2073eqtrd 2833 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵)
209 oveq1 7014 . . . . 5 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁))
210209eqeq1d 2795 . . . 4 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → ((𝐴𝑁) = 𝐵 ↔ (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵))
211208, 210syl5ibrcom 248 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
212211rexlimdva 3244 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
213174, 212impbid 213 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982  wrex 3104  cfv 6217  (class class class)co 7007  cc 10370  cr 10371  0cc0 10372  1c1 10373  ici 10374   + caddc 10375   · cmul 10377  cmin 10706  -cneg 10707   / cdiv 11134  cn 11475  2c2 11529  0cn0 11734  cz 11818  cuz 12082  +crp 12228  ...cfz 12731   mod cmo 13075  cexp 13267  expce 15236  πcpi 15241  logclog 24807  𝑐ccxp 24808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ioc 12582  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-fac 13472  df-bc 13501  df-hash 13529  df-shft 14248  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-limsup 14650  df-clim 14667  df-rlim 14668  df-sum 14865  df-ef 15242  df-sin 15244  df-cos 15245  df-pi 15247  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-fbas 20212  df-fg 20213  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cld 21299  df-ntr 21300  df-cls 21301  df-nei 21378  df-lp 21416  df-perf 21417  df-cn 21507  df-cnp 21508  df-haus 21595  df-tx 21842  df-hmeo 22035  df-fil 22126  df-fm 22218  df-flim 22219  df-flf 22220  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-limc 24135  df-dv 24136  df-log 24809  df-cxp 24810
This theorem is referenced by:  1cubr  25089
  Copyright terms: Public domain W3C validator