MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpeq Structured version   Visualization version   GIF version

Theorem cxpeq 26110
Description: Solve an equation involving an 𝑁-th power. The expression -1↑𝑐(2 / 𝑁) = exp(2πi / 𝑁) is a way to write the primitive 𝑁-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpeq ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝑁

Proof of Theorem cxpeq
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝑁 ∈ ℕ)
2 nnm1nn0 12454 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ ℕ0)
4 nn0uz 12805 . . . . . . 7 0 = (ℤ‘0)
53, 4eleqtrdi 2848 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝑁 − 1) ∈ (ℤ‘0))
6 eluzfz1 13448 . . . . . 6 ((𝑁 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑁 − 1)))
75, 6syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 0 ∈ (0...(𝑁 − 1)))
8 neg1cn 12267 . . . . . . . . . 10 -1 ∈ ℂ
9 2re 12227 . . . . . . . . . . . 12 2 ∈ ℝ
10 simp2 1137 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℕ)
11 nndivre 12194 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
129, 10, 11sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℝ)
1312recnd 11183 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (2 / 𝑁) ∈ ℂ)
14 cxpcl 26029 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
158, 13, 14sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1615adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
17 0nn0 12428 . . . . . . . 8 0 ∈ ℕ0
18 expcl 13985 . . . . . . . 8 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 0 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
1916, 17, 18sylancl 586 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((-1↑𝑐(2 / 𝑁))↑0) ∈ ℂ)
2019mul02d 11353 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0 · ((-1↑𝑐(2 / 𝑁))↑0)) = 0)
21 simprl 769 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = 0)
2221oveq1d 7372 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = (0↑𝑁))
23 simprr 771 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐴𝑁) = 𝐵)
2410expd 14044 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑁) = 0)
2522, 23, 243eqtr3d 2784 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐵 = 0)
2625oveq1d 7372 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = (0↑𝑐(1 / 𝑁)))
27 nncn 12161 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
28 nnne0 12187 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
29 reccl 11820 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ∈ ℂ)
30 recne0 11826 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (1 / 𝑁) ≠ 0)
3129, 300cxpd 26065 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) → (0↑𝑐(1 / 𝑁)) = 0)
3227, 28, 31syl2anc 584 . . . . . . . . 9 (𝑁 ∈ ℕ → (0↑𝑐(1 / 𝑁)) = 0)
331, 32syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (0↑𝑐(1 / 𝑁)) = 0)
3426, 33eqtrd 2776 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → (𝐵𝑐(1 / 𝑁)) = 0)
3534oveq1d 7372 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)) = (0 · ((-1↑𝑐(2 / 𝑁))↑0)))
3620, 35, 213eqtr4rd 2787 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
37 oveq2 7365 . . . . . . 7 (𝑛 = 0 → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑0))
3837oveq2d 7373 . . . . . 6 (𝑛 = 0 → ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0)))
3938rspceeqv 3595 . . . . 5 ((0 ∈ (0...(𝑁 − 1)) ∧ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑0))) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
407, 36, 39syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 = 0 ∧ (𝐴𝑁) = 𝐵)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
4140expr 457 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 = 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
42 simpl1 1191 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
43 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
44 simpl2 1192 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ)
4544nnzd 12526 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℤ)
46 explog 25949 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4742, 43, 45, 46syl3anc 1371 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) = (exp‘(𝑁 · (log‘𝐴))))
4847eqcomd 2742 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁))
4910nncnd 12169 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ∈ ℂ)
5049adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℂ)
5142, 43logcld 25926 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
5250, 51mulcld 11175 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝑁 · (log‘𝐴)) ∈ ℂ)
5344nnnn0d 12473 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → 𝑁 ∈ ℕ0)
5442, 53expcld 14051 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ∈ ℂ)
5542, 43, 45expne0d 14057 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (𝐴𝑁) ≠ 0)
56 eflogeq 25957 . . . . . . 7 (((𝑁 · (log‘𝐴)) ∈ ℂ ∧ (𝐴𝑁) ∈ ℂ ∧ (𝐴𝑁) ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5752, 54, 55, 56syl3anc 1371 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((exp‘(𝑁 · (log‘𝐴))) = (𝐴𝑁) ↔ ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
5848, 57mpbid 231 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)))
5954, 55logcld 25926 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (log‘(𝐴𝑁)) ∈ ℂ)
6059adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘(𝐴𝑁)) ∈ ℂ)
61 ax-icn 11110 . . . . . . . . . . 11 i ∈ ℂ
62 2cn 12228 . . . . . . . . . . . 12 2 ∈ ℂ
63 picn 25816 . . . . . . . . . . . 12 π ∈ ℂ
6462, 63mulcli 11162 . . . . . . . . . . 11 (2 · π) ∈ ℂ
6561, 64mulcli 11162 . . . . . . . . . 10 (i · (2 · π)) ∈ ℂ
66 zcn 12504 . . . . . . . . . . 11 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
6766adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
68 mulcl 11135 . . . . . . . . . 10 (((i · (2 · π)) ∈ ℂ ∧ 𝑚 ∈ ℂ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
6965, 67, 68sylancr 587 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) · 𝑚) ∈ ℂ)
7060, 69addcld 11174 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) ∈ ℂ)
7150adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℂ)
7251adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (log‘𝐴) ∈ ℂ)
7310nnne0d 12203 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝑁 ≠ 0)
7473ad2antrr 724 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ≠ 0)
7570, 71, 72, 74divmuld 11953 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) ↔ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚))))
76 fveq2 6842 . . . . . . . 8 ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)))
7771, 74reccld 11924 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1 / 𝑁) ∈ ℂ)
7877, 60mulcld 11175 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ)
7913ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
8079, 67mulcld 11175 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 / 𝑁) · 𝑚) ∈ ℂ)
8161, 63mulcli 11162 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
82 mulcl 11135 . . . . . . . . . . . . 13 ((((2 / 𝑁) · 𝑚) ∈ ℂ ∧ (i · π) ∈ ℂ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
8380, 81, 82sylancl 586 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ)
84 efadd 15976 . . . . . . . . . . . 12 ((((1 / 𝑁) · (log‘(𝐴𝑁))) ∈ ℂ ∧ (((2 / 𝑁) · 𝑚) · (i · π)) ∈ ℂ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8578, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
8660, 69, 71, 74divdird 11969 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)))
8760, 71, 74divrec2d 11935 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((log‘(𝐴𝑁)) / 𝑁) = ((1 / 𝑁) · (log‘(𝐴𝑁))))
8865a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · (2 · π)) ∈ ℂ)
8988, 67, 71, 74div23d 11968 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((i · (2 · π)) / 𝑁) · 𝑚))
9061, 62, 63mul12i 11350 . . . . . . . . . . . . . . . . . 18 (i · (2 · π)) = (2 · (i · π))
9190oveq1i 7367 . . . . . . . . . . . . . . . . 17 ((i · (2 · π)) / 𝑁) = ((2 · (i · π)) / 𝑁)
9262a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 2 ∈ ℂ)
9381a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (i · π) ∈ ℂ)
9492, 93, 71, 74div23d 11968 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((2 · (i · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9591, 94eqtrid 2788 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((i · (2 · π)) / 𝑁) = ((2 / 𝑁) · (i · π)))
9695oveq1d 7372 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) / 𝑁) · 𝑚) = (((2 / 𝑁) · (i · π)) · 𝑚))
9779, 93, 67mul32d 11365 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((2 / 𝑁) · (i · π)) · 𝑚) = (((2 / 𝑁) · 𝑚) · (i · π)))
9889, 96, 973eqtrd 2780 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((i · (2 · π)) · 𝑚) / 𝑁) = (((2 / 𝑁) · 𝑚) · (i · π)))
9987, 98oveq12d 7375 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) / 𝑁) + (((i · (2 · π)) · 𝑚) / 𝑁)) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
10086, 99eqtrd 2776 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π))))
101100fveq2d 6846 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(((1 / 𝑁) · (log‘(𝐴𝑁))) + (((2 / 𝑁) · 𝑚) · (i · π)))))
10254adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
10355adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝐴𝑁) ≠ 0)
104102, 103, 77cxpefd 26067 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))))
1058a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ∈ ℂ)
106 neg1ne0 12269 . . . . . . . . . . . . . . 15 -1 ≠ 0
107106a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → -1 ≠ 0)
108 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
109105, 107, 79, 108cxpmul2zd 26071 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = ((-1↑𝑐(2 / 𝑁))↑𝑚))
110105, 107, 80cxpefd 26067 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))))
111 logm1 25944 . . . . . . . . . . . . . . . 16 (log‘-1) = (i · π)
112111oveq2i 7368 . . . . . . . . . . . . . . 15 (((2 / 𝑁) · 𝑚) · (log‘-1)) = (((2 / 𝑁) · 𝑚) · (i · π))
113112fveq2i 6845 . . . . . . . . . . . . . 14 (exp‘(((2 / 𝑁) · 𝑚) · (log‘-1))) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))
114110, 113eqtrdi 2792 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐((2 / 𝑁) · 𝑚)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
115105, 79cxpcld 26063 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
1168a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ∈ ℂ)
117106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → -1 ≠ 0)
118116, 117, 13cxpne0d 26068 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
119118ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) ≠ 0)
120115, 119, 108expclzd 14056 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) ∈ ℂ)
12144adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℕ)
122108, 121zmodcld 13797 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℕ0)
123115, 122expcld 14051 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ∈ ℂ)
124122nn0zd 12525 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℤ)
125115, 119, 124expne0d 14057 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) ≠ 0)
126115, 119, 124, 108expsubd 14062 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
127121nnzd 12526 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
128 zre 12503 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
129121nnrpd 12955 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℝ+)
130 moddifz 13788 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
131128, 129, 130syl2an2 684 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)
132 expmulz 14014 . . . . . . . . . . . . . . . . 17 ((((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0) ∧ (𝑁 ∈ ℤ ∧ ((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ)) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
133115, 119, 127, 131, 132syl22anc 837 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
134122nn0cnd 12475 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ ℂ)
13567, 134subcld 11512 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 − (𝑚 mod 𝑁)) ∈ ℂ)
136135, 71, 74divcan2d 11933 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (𝑚 − (𝑚 mod 𝑁)))
137136oveq2d 7373 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · ((𝑚 − (𝑚 mod 𝑁)) / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))))
138 root1id 26107 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
139121, 138syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
140139oveq1d 7372 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)))
141 1exp 13997 . . . . . . . . . . . . . . . . . 18 (((𝑚 − (𝑚 mod 𝑁)) / 𝑁) ∈ ℤ → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
142131, 141syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (1↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
143140, 142eqtrd 2776 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑((𝑚 − (𝑚 mod 𝑁)) / 𝑁)) = 1)
144133, 137, 1433eqtr3d 2784 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 − (𝑚 mod 𝑁))) = 1)
145126, 144eqtr3d 2778 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝑚) / ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 1)
146120, 123, 125, 145diveq1d 11939 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝑚) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
147109, 114, 1463eqtr3rd 2785 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)) = (exp‘(((2 / 𝑁) · 𝑚) · (i · π))))
148104, 147oveq12d 7375 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = ((exp‘((1 / 𝑁) · (log‘(𝐴𝑁)))) · (exp‘(((2 / 𝑁) · 𝑚) · (i · π)))))
14985, 101, 1483eqtr4d 2786 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
150 eflog 25932 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
15142, 43, 150syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
152151adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (exp‘(log‘𝐴)) = 𝐴)
153149, 152eqeq12d 2752 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
154 zmodfz 13798 . . . . . . . . . . 11 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
155108, 121, 154syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → (𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)))
156 eqcom 2743 . . . . . . . . . . . . 13 (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴)
157 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 mod 𝑁) → ((-1↑𝑐(2 / 𝑁))↑𝑛) = ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁)))
158157oveq2d 7373 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 mod 𝑁) → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))))
159158eqeq1d 2738 . . . . . . . . . . . . 13 (𝑛 = (𝑚 mod 𝑁) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = 𝐴 ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
160156, 159bitrid 282 . . . . . . . . . . . 12 (𝑛 = (𝑚 mod 𝑁) → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴))
161160rspcev 3581 . . . . . . . . . . 11 (((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) ∧ (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
162161ex 413 . . . . . . . . . 10 ((𝑚 mod 𝑁) ∈ (0...(𝑁 − 1)) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
163155, 162syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑(𝑚 mod 𝑁))) = 𝐴 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
164153, 163sylbid 239 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((exp‘(((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁)) = (exp‘(log‘𝐴)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16576, 164syl5 34 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) / 𝑁) = (log‘𝐴) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16675, 165sylbird 259 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) ∧ 𝑚 ∈ ℤ) → ((𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
167166rexlimdva 3152 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → (∃𝑚 ∈ ℤ (𝑁 · (log‘𝐴)) = ((log‘(𝐴𝑁)) + ((i · (2 · π)) · 𝑚)) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
16858, 167mpd 15 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
169 oveq1 7364 . . . . . . 7 ((𝐴𝑁) = 𝐵 → ((𝐴𝑁)↑𝑐(1 / 𝑁)) = (𝐵𝑐(1 / 𝑁)))
170169oveq1d 7372 . . . . . 6 ((𝐴𝑁) = 𝐵 → (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)))
171170eqeq2d 2747 . . . . 5 ((𝐴𝑁) = 𝐵 → (𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ 𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
172171rexbidv 3175 . . . 4 ((𝐴𝑁) = 𝐵 → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = (((𝐴𝑁)↑𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
173168, 172syl5ibcom 244 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
17441, 173pm2.61dane 3032 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 → ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
175 simp3 1138 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
176 nnrecre 12195 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
1771763ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℝ)
178177recnd 11183 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (1 / 𝑁) ∈ ℂ)
179175, 178cxpcld 26063 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
180179adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵𝑐(1 / 𝑁)) ∈ ℂ)
181 elfznn0 13534 . . . . . . 7 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0)
182 expcl 13985 . . . . . . 7 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18315, 181, 182syl2an 596 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑛) ∈ ℂ)
18410adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ)
185184nnnn0d 12473 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
186180, 183, 185mulexpd 14066 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)))
187175adantr 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝐵 ∈ ℂ)
188 cxproot 26045 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
189187, 184, 188syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((𝐵𝑐(1 / 𝑁))↑𝑁) = 𝐵)
190181adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℕ0)
191190nn0cnd 12475 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℂ)
192184nncnd 12169 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℂ)
193191, 192mulcomd 11176 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝑛 · 𝑁) = (𝑁 · 𝑛))
194193oveq2d 7373 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)))
19515adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
196195, 185, 190expmuld 14054 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑛 · 𝑁)) = (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁))
197195, 190, 185expmuld 14054 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑(𝑁 · 𝑛)) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
198194, 196, 1973eqtr3d 2784 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛))
199184, 138syl 17 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
200199oveq1d 7372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑁)↑𝑛) = (1↑𝑛))
201 elfzelz 13441 . . . . . . . . 9 (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℤ)
202201adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 𝑛 ∈ ℤ)
203 1exp 13997 . . . . . . . 8 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
204202, 203syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (1↑𝑛) = 1)
205198, 200, 2043eqtrd 2780 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁) = 1)
206189, 205oveq12d 7375 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁))↑𝑁) · (((-1↑𝑐(2 / 𝑁))↑𝑛)↑𝑁)) = (𝐵 · 1))
207187mulid1d 11172 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐵 · 1) = 𝐵)
208186, 206, 2073eqtrd 2780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵)
209 oveq1 7364 . . . . 5 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁))
210209eqeq1d 2738 . . . 4 (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → ((𝐴𝑁) = 𝐵 ↔ (((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))↑𝑁) = 𝐵))
211208, 210syl5ibrcom 246 . . 3 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
212211rexlimdva 3152 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛)) → (𝐴𝑁) = 𝐵))
213174, 212impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424   mod cmo 13774  cexp 13967  expce 15944  πcpi 15949  logclog 25910  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by:  1cubr  26192
  Copyright terms: Public domain W3C validator