Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtinf Structured version   Visualization version   GIF version

Theorem mvtinf 33026
Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtinf.f 𝐹 = (mVT‘𝑇)
mvtinf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtinf ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)

Proof of Theorem mvtinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2759 . . . . 5 (mCN‘𝑇) = (mCN‘𝑇)
2 eqid 2759 . . . . 5 (mVR‘𝑇) = (mVR‘𝑇)
3 mvtinf.y . . . . 5 𝑌 = (mType‘𝑇)
4 mvtinf.f . . . . 5 𝐹 = (mVT‘𝑇)
5 eqid 2759 . . . . 5 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2759 . . . . 5 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2759 . . . . 5 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 33020 . . . 4 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
98ibi 270 . . 3 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)))
109simprrd 774 . 2 (𝑇 ∈ mFS → ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)
11 sneq 4533 . . . . . 6 (𝑣 = 𝑋 → {𝑣} = {𝑋})
1211imaeq2d 5902 . . . . 5 (𝑣 = 𝑋 → (𝑌 “ {𝑣}) = (𝑌 “ {𝑋}))
1312eleq1d 2837 . . . 4 (𝑣 = 𝑋 → ((𝑌 “ {𝑣}) ∈ Fin ↔ (𝑌 “ {𝑋}) ∈ Fin))
1413notbid 322 . . 3 (𝑣 = 𝑋 → (¬ (𝑌 “ {𝑣}) ∈ Fin ↔ ¬ (𝑌 “ {𝑋}) ∈ Fin))
1514rspccva 3541 . 2 ((∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
1610, 15sylan 584 1 ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  cin 3858  wss 3859  c0 4226  {csn 4523  ccnv 5524  cima 5528  wf 6332  cfv 6336  Fincfn 8528  mCNcmcn 32931  mVRcmvar 32932  mTypecmty 32933  mVTcmvt 32934  mTCcmtc 32935  mAxcmax 32936  mStatcmsta 32946  mFScmfs 32947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rab 3080  df-v 3412  df-un 3864  df-in 3866  df-ss 3876  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-mfs 32967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator