Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtinf | Structured version Visualization version GIF version |
Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvtinf.f | ⊢ 𝐹 = (mVT‘𝑇) |
mvtinf.y | ⊢ 𝑌 = (mType‘𝑇) |
Ref | Expression |
---|---|
mvtinf | ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . . . 5 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
2 | eqid 2759 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
3 | mvtinf.y | . . . . 5 ⊢ 𝑌 = (mType‘𝑇) | |
4 | mvtinf.f | . . . . 5 ⊢ 𝐹 = (mVT‘𝑇) | |
5 | eqid 2759 | . . . . 5 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
6 | eqid 2759 | . . . . 5 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
7 | eqid 2759 | . . . . 5 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 33020 | . . . 4 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) |
9 | 8 | ibi 270 | . . 3 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin))) |
10 | 9 | simprrd 774 | . 2 ⊢ (𝑇 ∈ mFS → ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin) |
11 | sneq 4533 | . . . . . 6 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
12 | 11 | imaeq2d 5902 | . . . . 5 ⊢ (𝑣 = 𝑋 → (◡𝑌 “ {𝑣}) = (◡𝑌 “ {𝑋})) |
13 | 12 | eleq1d 2837 | . . . 4 ⊢ (𝑣 = 𝑋 → ((◡𝑌 “ {𝑣}) ∈ Fin ↔ (◡𝑌 “ {𝑋}) ∈ Fin)) |
14 | 13 | notbid 322 | . . 3 ⊢ (𝑣 = 𝑋 → (¬ (◡𝑌 “ {𝑣}) ∈ Fin ↔ ¬ (◡𝑌 “ {𝑋}) ∈ Fin)) |
15 | 14 | rspccva 3541 | . 2 ⊢ ((∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) |
16 | 10, 15 | sylan 584 | 1 ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∩ cin 3858 ⊆ wss 3859 ∅c0 4226 {csn 4523 ◡ccnv 5524 “ cima 5528 ⟶wf 6332 ‘cfv 6336 Fincfn 8528 mCNcmcn 32931 mVRcmvar 32932 mTypecmty 32933 mVTcmvt 32934 mTCcmtc 32935 mAxcmax 32936 mStatcmsta 32946 mFScmfs 32947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rab 3080 df-v 3412 df-un 3864 df-in 3866 df-ss 3876 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-mfs 32967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |