Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtinf Structured version   Visualization version   GIF version

Theorem mvtinf 35620
Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtinf.f 𝐹 = (mVT‘𝑇)
mvtinf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtinf ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)

Proof of Theorem mvtinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (mCN‘𝑇) = (mCN‘𝑇)
2 eqid 2733 . . . . 5 (mVR‘𝑇) = (mVR‘𝑇)
3 mvtinf.y . . . . 5 𝑌 = (mType‘𝑇)
4 mvtinf.f . . . . 5 𝐹 = (mVT‘𝑇)
5 eqid 2733 . . . . 5 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2733 . . . . 5 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2733 . . . . 5 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 35614 . . . 4 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
98ibi 267 . . 3 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)))
109simprrd 773 . 2 (𝑇 ∈ mFS → ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)
11 sneq 4585 . . . . . 6 (𝑣 = 𝑋 → {𝑣} = {𝑋})
1211imaeq2d 6013 . . . . 5 (𝑣 = 𝑋 → (𝑌 “ {𝑣}) = (𝑌 “ {𝑋}))
1312eleq1d 2818 . . . 4 (𝑣 = 𝑋 → ((𝑌 “ {𝑣}) ∈ Fin ↔ (𝑌 “ {𝑋}) ∈ Fin))
1413notbid 318 . . 3 (𝑣 = 𝑋 → (¬ (𝑌 “ {𝑣}) ∈ Fin ↔ ¬ (𝑌 “ {𝑋}) ∈ Fin))
1514rspccva 3572 . 2 ((∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
1610, 15sylan 580 1 ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  cin 3897  wss 3898  c0 4282  {csn 4575  ccnv 5618  cima 5622  wf 6482  cfv 6486  Fincfn 8875  mCNcmcn 35525  mVRcmvar 35526  mTypecmty 35527  mVTcmvt 35528  mTCcmtc 35529  mAxcmax 35530  mStatcmsta 35540  mFScmfs 35541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-mfs 35561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator