Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtinf Structured version   Visualization version   GIF version

Theorem mvtinf 33417
Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtinf.f 𝐹 = (mVT‘𝑇)
mvtinf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtinf ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)

Proof of Theorem mvtinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (mCN‘𝑇) = (mCN‘𝑇)
2 eqid 2738 . . . . 5 (mVR‘𝑇) = (mVR‘𝑇)
3 mvtinf.y . . . . 5 𝑌 = (mType‘𝑇)
4 mvtinf.f . . . . 5 𝐹 = (mVT‘𝑇)
5 eqid 2738 . . . . 5 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2738 . . . . 5 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2738 . . . . 5 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 33411 . . . 4 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
98ibi 266 . . 3 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)))
109simprrd 770 . 2 (𝑇 ∈ mFS → ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)
11 sneq 4568 . . . . . 6 (𝑣 = 𝑋 → {𝑣} = {𝑋})
1211imaeq2d 5958 . . . . 5 (𝑣 = 𝑋 → (𝑌 “ {𝑣}) = (𝑌 “ {𝑋}))
1312eleq1d 2823 . . . 4 (𝑣 = 𝑋 → ((𝑌 “ {𝑣}) ∈ Fin ↔ (𝑌 “ {𝑋}) ∈ Fin))
1413notbid 317 . . 3 (𝑣 = 𝑋 → (¬ (𝑌 “ {𝑣}) ∈ Fin ↔ ¬ (𝑌 “ {𝑋}) ∈ Fin))
1514rspccva 3551 . 2 ((∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
1610, 15sylan 579 1 ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cin 3882  wss 3883  c0 4253  {csn 4558  ccnv 5579  cima 5583  wf 6414  cfv 6418  Fincfn 8691  mCNcmcn 33322  mVRcmvar 33323  mTypecmty 33324  mVTcmvt 33325  mTCcmtc 33326  mAxcmax 33327  mStatcmsta 33337  mFScmfs 33338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mfs 33358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator