| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvtinf | Structured version Visualization version GIF version | ||
| Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvtinf.f | ⊢ 𝐹 = (mVT‘𝑇) |
| mvtinf.y | ⊢ 𝑌 = (mType‘𝑇) |
| Ref | Expression |
|---|---|
| mvtinf | ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . . 5 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 3 | mvtinf.y | . . . . 5 ⊢ 𝑌 = (mType‘𝑇) | |
| 4 | mvtinf.f | . . . . 5 ⊢ 𝐹 = (mVT‘𝑇) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
| 7 | eqid 2735 | . . . . 5 ⊢ (mStat‘𝑇) = (mStat‘𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismfs 35571 | . . . 4 ⊢ (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) |
| 9 | 8 | ibi 267 | . . 3 ⊢ (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin))) |
| 10 | 9 | simprrd 773 | . 2 ⊢ (𝑇 ∈ mFS → ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin) |
| 11 | sneq 4611 | . . . . . 6 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
| 12 | 11 | imaeq2d 6047 | . . . . 5 ⊢ (𝑣 = 𝑋 → (◡𝑌 “ {𝑣}) = (◡𝑌 “ {𝑋})) |
| 13 | 12 | eleq1d 2819 | . . . 4 ⊢ (𝑣 = 𝑋 → ((◡𝑌 “ {𝑣}) ∈ Fin ↔ (◡𝑌 “ {𝑋}) ∈ Fin)) |
| 14 | 13 | notbid 318 | . . 3 ⊢ (𝑣 = 𝑋 → (¬ (◡𝑌 “ {𝑣}) ∈ Fin ↔ ¬ (◡𝑌 “ {𝑋}) ∈ Fin)) |
| 15 | 14 | rspccva 3600 | . 2 ⊢ ((∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) |
| 16 | 10, 15 | sylan 580 | 1 ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 ◡ccnv 5653 “ cima 5657 ⟶wf 6527 ‘cfv 6531 Fincfn 8959 mCNcmcn 35482 mVRcmvar 35483 mTypecmty 35484 mVTcmvt 35485 mTCcmtc 35486 mAxcmax 35487 mStatcmsta 35497 mFScmfs 35498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-mfs 35518 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |