Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvtinf Structured version   Visualization version   GIF version

Theorem mvtinf 33545
Description: Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvtinf.f 𝐹 = (mVT‘𝑇)
mvtinf.y 𝑌 = (mType‘𝑇)
Assertion
Ref Expression
mvtinf ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)

Proof of Theorem mvtinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (mCN‘𝑇) = (mCN‘𝑇)
2 eqid 2733 . . . . 5 (mVR‘𝑇) = (mVR‘𝑇)
3 mvtinf.y . . . . 5 𝑌 = (mType‘𝑇)
4 mvtinf.f . . . . 5 𝐹 = (mVT‘𝑇)
5 eqid 2733 . . . . 5 (mTC‘𝑇) = (mTC‘𝑇)
6 eqid 2733 . . . . 5 (mAx‘𝑇) = (mAx‘𝑇)
7 eqid 2733 . . . . 5 (mStat‘𝑇) = (mStat‘𝑇)
81, 2, 3, 4, 5, 6, 7ismfs 33539 . . . 4 (𝑇 ∈ mFS → (𝑇 ∈ mFS ↔ ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin))))
98ibi 266 . . 3 (𝑇 ∈ mFS → ((((mCN‘𝑇) ∩ (mVR‘𝑇)) = ∅ ∧ 𝑌:(mVR‘𝑇)⟶(mTC‘𝑇)) ∧ ((mAx‘𝑇) ⊆ (mStat‘𝑇) ∧ ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)))
109simprrd 770 . 2 (𝑇 ∈ mFS → ∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin)
11 sneq 4574 . . . . . 6 (𝑣 = 𝑋 → {𝑣} = {𝑋})
1211imaeq2d 5970 . . . . 5 (𝑣 = 𝑋 → (𝑌 “ {𝑣}) = (𝑌 “ {𝑋}))
1312eleq1d 2818 . . . 4 (𝑣 = 𝑋 → ((𝑌 “ {𝑣}) ∈ Fin ↔ (𝑌 “ {𝑋}) ∈ Fin))
1413notbid 317 . . 3 (𝑣 = 𝑋 → (¬ (𝑌 “ {𝑣}) ∈ Fin ↔ ¬ (𝑌 “ {𝑋}) ∈ Fin))
1514rspccva 3562 . 2 ((∀𝑣𝐹 ¬ (𝑌 “ {𝑣}) ∈ Fin ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
1610, 15sylan 579 1 ((𝑇 ∈ mFS ∧ 𝑋𝐹) → ¬ (𝑌 “ {𝑋}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2101  wral 3059  cin 3888  wss 3889  c0 4259  {csn 4564  ccnv 5590  cima 5594  wf 6443  cfv 6447  Fincfn 8753  mCNcmcn 33450  mVRcmvar 33451  mTypecmty 33452  mVTcmvt 33453  mTCcmtc 33454  mAxcmax 33455  mStatcmsta 33465  mFScmfs 33466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3060  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-fv 6455  df-mfs 33486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator