Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff1 Structured version   Visualization version   GIF version

Theorem msubff1 32329
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff1.v 𝑉 = (mVR‘𝑇)
msubff1.r 𝑅 = (mREx‘𝑇)
msubff1.s 𝑆 = (mSubst‘𝑇)
msubff1.e 𝐸 = (mEx‘𝑇)
Assertion
Ref Expression
msubff1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝐸𝑚 𝐸))

Proof of Theorem msubff1
Dummy variables 𝑓 𝑔 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff1.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubff1.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubff1.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubff1.e . . . 4 𝐸 = (mEx‘𝑇)
51, 2, 3, 4msubff 32303 . . 3 (𝑇 ∈ mFS → 𝑆:(𝑅pm 𝑉)⟶(𝐸𝑚 𝐸))
6 mapsspm 8240 . . . 4 (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉)
76a1i 11 . . 3 (𝑇 ∈ mFS → (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉))
85, 7fssresd 6374 . 2 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)⟶(𝐸𝑚 𝐸))
9 eqid 2778 . . . . . . . . . . . . 13 (mRSubst‘𝑇) = (mRSubst‘𝑇)
101, 2, 9mrsubff 32285 . . . . . . . . . . . 12 (𝑇 ∈ mFS → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
1110ad2antrr 713 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
12 simplrl 764 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅𝑚 𝑉))
136, 12sseldi 3856 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅pm 𝑉))
1411, 13ffvelrnd 6677 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅𝑚 𝑅))
15 elmapi 8228 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅𝑚 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
16 ffn 6344 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
1714, 15, 163syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
18 simplrr 765 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅𝑚 𝑉))
196, 18sseldi 3856 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅pm 𝑉))
2011, 19ffvelrnd 6677 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) ∈ (𝑅𝑚 𝑅))
21 elmapi 8228 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) ∈ (𝑅𝑚 𝑅) → ((mRSubst‘𝑇)‘𝑔):𝑅𝑅)
22 ffn 6344 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
2320, 21, 223syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
24 simplrr 765 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (𝑆𝑓) = (𝑆𝑔))
2524fveq1d 6501 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))
2612adantr 473 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓 ∈ (𝑅𝑚 𝑉))
27 elmapi 8228 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅𝑚 𝑉) → 𝑓:𝑉𝑅)
2826, 27syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓:𝑉𝑅)
29 ssidd 3880 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑉𝑉)
30 eqid 2778 . . . . . . . . . . . . . . . . . 18 (mTC‘𝑇) = (mTC‘𝑇)
31 eqid 2778 . . . . . . . . . . . . . . . . . 18 (mType‘𝑇) = (mType‘𝑇)
321, 30, 31mtyf2 32324 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
3332ad3antrrr 717 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
34 simplrl 764 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑣𝑉)
3533, 34ffvelrnd 6677 . . . . . . . . . . . . . . 15 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇))
36 opelxpi 5444 . . . . . . . . . . . . . . 15 ((((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3735, 36sylancom 579 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3830, 4, 2mexval 32275 . . . . . . . . . . . . . 14 𝐸 = ((mTC‘𝑇) × 𝑅)
3937, 38syl6eleqr 2877 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸)
401, 2, 3, 4, 9msubval 32298 . . . . . . . . . . . . 13 ((𝑓:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4128, 29, 39, 40syl3anc 1351 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4218adantr 473 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔 ∈ (𝑅𝑚 𝑉))
43 elmapi 8228 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝑅𝑚 𝑉) → 𝑔:𝑉𝑅)
4442, 43syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔:𝑉𝑅)
451, 2, 3, 4, 9msubval 32298 . . . . . . . . . . . . 13 ((𝑔:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4644, 29, 39, 45syl3anc 1351 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4725, 41, 463eqtr3d 2822 . . . . . . . . . . 11 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
48 fvex 6512 . . . . . . . . . . . . 13 (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∈ V
49 fvex 6512 . . . . . . . . . . . . 13 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) ∈ V
5048, 49opth 5225 . . . . . . . . . . . 12 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ ↔ ((1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))))
5150simprbi 489 . . . . . . . . . . 11 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
5247, 51syl 17 . . . . . . . . . 10 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
53 fvex 6512 . . . . . . . . . . . 12 ((mType‘𝑇)‘𝑣) ∈ V
54 vex 3418 . . . . . . . . . . . 12 𝑟 ∈ V
5553, 54op2nd 7510 . . . . . . . . . . 11 (2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = 𝑟
5655fveq2i 6502 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑓)‘𝑟)
5755fveq2i 6502 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘𝑟)
5852, 56, 573eqtr3g 2837 . . . . . . . . 9 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘𝑟) = (((mRSubst‘𝑇)‘𝑔)‘𝑟))
5917, 23, 58eqfnfvd 6630 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔))
601, 2, 9mrsubff1 32287 . . . . . . . . . . 11 (𝑇 ∈ mFS → ((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅))
61 f1fveq 6845 . . . . . . . . . . 11 ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝑅𝑚 𝑅) ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
6260, 61sylan 572 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
63 fvres 6518 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅𝑚 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = ((mRSubst‘𝑇)‘𝑓))
64 fvres 6518 . . . . . . . . . . . 12 (𝑔 ∈ (𝑅𝑚 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) = ((mRSubst‘𝑇)‘𝑔))
6563, 64eqeqan12d 2794 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6665adantl 474 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6762, 66bitr3d 273 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6867adantr 473 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6959, 68mpbird 249 . . . . . . 7 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 = 𝑔)
7069fveq1d 6501 . . . . . 6 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓𝑣) = (𝑔𝑣))
7170expr 449 . . . . 5 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓) = (𝑆𝑔) → (𝑓𝑣) = (𝑔𝑣)))
7271ralrimdva 3139 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → ((𝑆𝑓) = (𝑆𝑔) → ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
73 fvres 6518 . . . . . 6 (𝑓 ∈ (𝑅𝑚 𝑉) → ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = (𝑆𝑓))
74 fvres 6518 . . . . . 6 (𝑔 ∈ (𝑅𝑚 𝑉) → ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) = (𝑆𝑔))
7573, 74eqeqan12d 2794 . . . . 5 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
7675adantl 474 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
77 ffn 6344 . . . . . . 7 (𝑓:𝑉𝑅𝑓 Fn 𝑉)
78 ffn 6344 . . . . . . 7 (𝑔:𝑉𝑅𝑔 Fn 𝑉)
79 eqfnfv 6627 . . . . . . 7 ((𝑓 Fn 𝑉𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8077, 78, 79syl2an 586 . . . . . 6 ((𝑓:𝑉𝑅𝑔:𝑉𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8127, 43, 80syl2an 586 . . . . 5 ((𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8281adantl 474 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8372, 76, 823imtr4d 286 . . 3 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅𝑚 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉))) → (((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔))
8483ralrimivva 3141 . 2 (𝑇 ∈ mFS → ∀𝑓 ∈ (𝑅𝑚 𝑉)∀𝑔 ∈ (𝑅𝑚 𝑉)(((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔))
85 dff13 6838 . 2 ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝐸𝑚 𝐸) ↔ ((𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)⟶(𝐸𝑚 𝐸) ∧ ∀𝑓 ∈ (𝑅𝑚 𝑉)∀𝑔 ∈ (𝑅𝑚 𝑉)(((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅𝑚 𝑉))‘𝑔) → 𝑓 = 𝑔)))
868, 84, 85sylanbrc 575 1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅𝑚 𝑉)):(𝑅𝑚 𝑉)–1-1→(𝐸𝑚 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088  wss 3829  cop 4447   × cxp 5405  cres 5409   Fn wfn 6183  wf 6184  1-1wf1 6185  cfv 6188  (class class class)co 6976  1st c1st 7499  2nd c2nd 7500  𝑚 cmap 8206  pm cpm 8207  mVRcmvar 32234  mTypecmty 32235  mTCcmtc 32237  mRExcmrex 32239  mExcmex 32240  mRSubstcmrsub 32243  mSubstcmsub 32244  mFScmfs 32249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-fzo 12850  df-seq 13185  df-hash 13506  df-word 13673  df-concat 13734  df-s1 13759  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-0g 16571  df-gsum 16572  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-frmd 17855  df-mrex 32259  df-mex 32260  df-mrsub 32263  df-msub 32264  df-mfs 32269
This theorem is referenced by:  msubff1o  32330
  Copyright terms: Public domain W3C validator