Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff1 Structured version   Visualization version   GIF version

Theorem msubff1 35543
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff1.v 𝑉 = (mVR‘𝑇)
msubff1.r 𝑅 = (mREx‘𝑇)
msubff1.s 𝑆 = (mSubst‘𝑇)
msubff1.e 𝐸 = (mEx‘𝑇)
Assertion
Ref Expression
msubff1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝐸m 𝐸))

Proof of Theorem msubff1
Dummy variables 𝑓 𝑔 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff1.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubff1.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubff1.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubff1.e . . . 4 𝐸 = (mEx‘𝑇)
51, 2, 3, 4msubff 35517 . . 3 (𝑇 ∈ mFS → 𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))
6 mapsspm 8849 . . . 4 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
76a1i 11 . . 3 (𝑇 ∈ mFS → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
85, 7fssresd 6727 . 2 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝐸m 𝐸))
9 eqid 2729 . . . . . . . . . . . . 13 (mRSubst‘𝑇) = (mRSubst‘𝑇)
101, 2, 9mrsubff 35499 . . . . . . . . . . . 12 (𝑇 ∈ mFS → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
1110ad2antrr 726 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
12 simplrl 776 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅m 𝑉))
136, 12sselid 3944 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅pm 𝑉))
1411, 13ffvelcdmd 7057 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅))
15 elmapi 8822 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
16 ffn 6688 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
1714, 15, 163syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
18 simplrr 777 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅m 𝑉))
196, 18sselid 3944 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅pm 𝑉))
2011, 19ffvelcdmd 7057 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) ∈ (𝑅m 𝑅))
21 elmapi 8822 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) ∈ (𝑅m 𝑅) → ((mRSubst‘𝑇)‘𝑔):𝑅𝑅)
22 ffn 6688 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
2320, 21, 223syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
24 simplrr 777 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (𝑆𝑓) = (𝑆𝑔))
2524fveq1d 6860 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))
2612adantr 480 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓 ∈ (𝑅m 𝑉))
27 elmapi 8822 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅m 𝑉) → 𝑓:𝑉𝑅)
2826, 27syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓:𝑉𝑅)
29 ssidd 3970 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑉𝑉)
30 eqid 2729 . . . . . . . . . . . . . . . . . 18 (mTC‘𝑇) = (mTC‘𝑇)
31 eqid 2729 . . . . . . . . . . . . . . . . . 18 (mType‘𝑇) = (mType‘𝑇)
321, 30, 31mtyf2 35538 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
3332ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
34 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑣𝑉)
3533, 34ffvelcdmd 7057 . . . . . . . . . . . . . . 15 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇))
36 opelxpi 5675 . . . . . . . . . . . . . . 15 ((((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3735, 36sylancom 588 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3830, 4, 2mexval 35489 . . . . . . . . . . . . . 14 𝐸 = ((mTC‘𝑇) × 𝑅)
3937, 38eleqtrrdi 2839 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸)
401, 2, 3, 4, 9msubval 35512 . . . . . . . . . . . . 13 ((𝑓:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4128, 29, 39, 40syl3anc 1373 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4218adantr 480 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔 ∈ (𝑅m 𝑉))
43 elmapi 8822 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝑅m 𝑉) → 𝑔:𝑉𝑅)
4442, 43syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔:𝑉𝑅)
451, 2, 3, 4, 9msubval 35512 . . . . . . . . . . . . 13 ((𝑔:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4644, 29, 39, 45syl3anc 1373 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4725, 41, 463eqtr3d 2772 . . . . . . . . . . 11 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
48 fvex 6871 . . . . . . . . . . . . 13 (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∈ V
49 fvex 6871 . . . . . . . . . . . . 13 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) ∈ V
5048, 49opth 5436 . . . . . . . . . . . 12 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ ↔ ((1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))))
5150simprbi 496 . . . . . . . . . . 11 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
5247, 51syl 17 . . . . . . . . . 10 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
53 fvex 6871 . . . . . . . . . . . 12 ((mType‘𝑇)‘𝑣) ∈ V
54 vex 3451 . . . . . . . . . . . 12 𝑟 ∈ V
5553, 54op2nd 7977 . . . . . . . . . . 11 (2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = 𝑟
5655fveq2i 6861 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑓)‘𝑟)
5755fveq2i 6861 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘𝑟)
5852, 56, 573eqtr3g 2787 . . . . . . . . 9 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘𝑟) = (((mRSubst‘𝑇)‘𝑔)‘𝑟))
5917, 23, 58eqfnfvd 7006 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔))
601, 2, 9mrsubff1 35501 . . . . . . . . . . 11 (𝑇 ∈ mFS → ((mRSubst‘𝑇) ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅))
61 f1fveq 7237 . . . . . . . . . . 11 ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅) ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
6260, 61sylan 580 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
63 fvres 6877 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅m 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = ((mRSubst‘𝑇)‘𝑓))
64 fvres 6877 . . . . . . . . . . . 12 (𝑔 ∈ (𝑅m 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) = ((mRSubst‘𝑇)‘𝑔))
6563, 64eqeqan12d 2743 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6665adantl 481 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6762, 66bitr3d 281 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6867adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6959, 68mpbird 257 . . . . . . 7 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 = 𝑔)
7069fveq1d 6860 . . . . . 6 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓𝑣) = (𝑔𝑣))
7170expr 456 . . . . 5 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓) = (𝑆𝑔) → (𝑓𝑣) = (𝑔𝑣)))
7271ralrimdva 3133 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((𝑆𝑓) = (𝑆𝑔) → ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
73 fvres 6877 . . . . . 6 (𝑓 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = (𝑆𝑓))
74 fvres 6877 . . . . . 6 (𝑔 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) = (𝑆𝑔))
7573, 74eqeqan12d 2743 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
7675adantl 481 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
77 ffn 6688 . . . . . . 7 (𝑓:𝑉𝑅𝑓 Fn 𝑉)
78 ffn 6688 . . . . . . 7 (𝑔:𝑉𝑅𝑔 Fn 𝑉)
79 eqfnfv 7003 . . . . . . 7 ((𝑓 Fn 𝑉𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8077, 78, 79syl2an 596 . . . . . 6 ((𝑓:𝑉𝑅𝑔:𝑉𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8127, 43, 80syl2an 596 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8281adantl 481 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8372, 76, 823imtr4d 294 . . 3 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
8483ralrimivva 3180 . 2 (𝑇 ∈ mFS → ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
85 dff13 7229 . 2 ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝐸m 𝐸) ↔ ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝐸m 𝐸) ∧ ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔)))
868, 84, 85sylanbrc 583 1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝐸m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  cop 4595   × cxp 5636  cres 5640   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  m cmap 8799  pm cpm 8800  mVRcmvar 35448  mTypecmty 35449  mTCcmtc 35451  mRExcmrex 35453  mExcmex 35454  mRSubstcmrsub 35457  mSubstcmsub 35458  mFScmfs 35463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-frmd 18776  df-mrex 35473  df-mex 35474  df-mrsub 35477  df-msub 35478  df-mfs 35483
This theorem is referenced by:  msubff1o  35544
  Copyright terms: Public domain W3C validator