Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff1 Structured version   Visualization version   GIF version

Theorem msubff1 35012
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff1.v 𝑉 = (mVRβ€˜π‘‡)
msubff1.r 𝑅 = (mRExβ€˜π‘‡)
msubff1.s 𝑆 = (mSubstβ€˜π‘‡)
msubff1.e 𝐸 = (mExβ€˜π‘‡)
Assertion
Ref Expression
msubff1 (𝑇 ∈ mFS β†’ (𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝐸 ↑m 𝐸))

Proof of Theorem msubff1
Dummy variables 𝑓 𝑔 π‘Ÿ 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff1.v . . . 4 𝑉 = (mVRβ€˜π‘‡)
2 msubff1.r . . . 4 𝑅 = (mRExβ€˜π‘‡)
3 msubff1.s . . . 4 𝑆 = (mSubstβ€˜π‘‡)
4 msubff1.e . . . 4 𝐸 = (mExβ€˜π‘‡)
51, 2, 3, 4msubff 34986 . . 3 (𝑇 ∈ mFS β†’ 𝑆:(𝑅 ↑pm 𝑉)⟢(𝐸 ↑m 𝐸))
6 mapsspm 8876 . . . 4 (𝑅 ↑m 𝑉) βŠ† (𝑅 ↑pm 𝑉)
76a1i 11 . . 3 (𝑇 ∈ mFS β†’ (𝑅 ↑m 𝑉) βŠ† (𝑅 ↑pm 𝑉))
85, 7fssresd 6758 . 2 (𝑇 ∈ mFS β†’ (𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟢(𝐸 ↑m 𝐸))
9 eqid 2731 . . . . . . . . . . . . 13 (mRSubstβ€˜π‘‡) = (mRSubstβ€˜π‘‡)
101, 2, 9mrsubff 34968 . . . . . . . . . . . 12 (𝑇 ∈ mFS β†’ (mRSubstβ€˜π‘‡):(𝑅 ↑pm 𝑉)⟢(𝑅 ↑m 𝑅))
1110ad2antrr 723 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ (mRSubstβ€˜π‘‡):(𝑅 ↑pm 𝑉)⟢(𝑅 ↑m 𝑅))
12 simplrl 774 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑓 ∈ (𝑅 ↑m 𝑉))
136, 12sselid 3980 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑓 ∈ (𝑅 ↑pm 𝑉))
1411, 13ffvelcdmd 7087 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) ∈ (𝑅 ↑m 𝑅))
15 elmapi 8849 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘“) ∈ (𝑅 ↑m 𝑅) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“):π‘…βŸΆπ‘…)
16 ffn 6717 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘“):π‘…βŸΆπ‘… β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) Fn 𝑅)
1714, 15, 163syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) Fn 𝑅)
18 simplrr 775 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑔 ∈ (𝑅 ↑m 𝑉))
196, 18sselid 3980 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑔 ∈ (𝑅 ↑pm 𝑉))
2011, 19ffvelcdmd 7087 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”) ∈ (𝑅 ↑m 𝑅))
21 elmapi 8849 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘”) ∈ (𝑅 ↑m 𝑅) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”):π‘…βŸΆπ‘…)
22 ffn 6717 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘”):π‘…βŸΆπ‘… β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”) Fn 𝑅)
2320, 21, 223syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”) Fn 𝑅)
24 simplrr 775 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))
2524fveq1d 6893 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((π‘†β€˜π‘“)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ((π‘†β€˜π‘”)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))
2612adantr 480 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑓 ∈ (𝑅 ↑m 𝑉))
27 elmapi 8849 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅 ↑m 𝑉) β†’ 𝑓:π‘‰βŸΆπ‘…)
2826, 27syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑓:π‘‰βŸΆπ‘…)
29 ssidd 4005 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑉 βŠ† 𝑉)
30 eqid 2731 . . . . . . . . . . . . . . . . . 18 (mTCβ€˜π‘‡) = (mTCβ€˜π‘‡)
31 eqid 2731 . . . . . . . . . . . . . . . . . 18 (mTypeβ€˜π‘‡) = (mTypeβ€˜π‘‡)
321, 30, 31mtyf2 35007 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS β†’ (mTypeβ€˜π‘‡):π‘‰βŸΆ(mTCβ€˜π‘‡))
3332ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (mTypeβ€˜π‘‡):π‘‰βŸΆ(mTCβ€˜π‘‡))
34 simplrl 774 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑣 ∈ 𝑉)
3533, 34ffvelcdmd 7087 . . . . . . . . . . . . . . 15 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((mTypeβ€˜π‘‡)β€˜π‘£) ∈ (mTCβ€˜π‘‡))
36 opelxpi 5713 . . . . . . . . . . . . . . 15 ((((mTypeβ€˜π‘‡)β€˜π‘£) ∈ (mTCβ€˜π‘‡) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ ((mTCβ€˜π‘‡) Γ— 𝑅))
3735, 36sylancom 587 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ ((mTCβ€˜π‘‡) Γ— 𝑅))
3830, 4, 2mexval 34958 . . . . . . . . . . . . . 14 𝐸 = ((mTCβ€˜π‘‡) Γ— 𝑅)
3937, 38eleqtrrdi 2843 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ 𝐸)
401, 2, 3, 4, 9msubval 34981 . . . . . . . . . . . . 13 ((𝑓:π‘‰βŸΆπ‘… ∧ 𝑉 βŠ† 𝑉 ∧ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ 𝐸) β†’ ((π‘†β€˜π‘“)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4128, 29, 39, 40syl3anc 1370 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((π‘†β€˜π‘“)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4218adantr 480 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑔 ∈ (𝑅 ↑m 𝑉))
43 elmapi 8849 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝑅 ↑m 𝑉) β†’ 𝑔:π‘‰βŸΆπ‘…)
4442, 43syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑔:π‘‰βŸΆπ‘…)
451, 2, 3, 4, 9msubval 34981 . . . . . . . . . . . . 13 ((𝑔:π‘‰βŸΆπ‘… ∧ 𝑉 βŠ† 𝑉 ∧ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ 𝐸) β†’ ((π‘†β€˜π‘”)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4644, 29, 39, 45syl3anc 1370 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((π‘†β€˜π‘”)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4725, 41, 463eqtr3d 2779 . . . . . . . . . . 11 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
48 fvex 6904 . . . . . . . . . . . . 13 (1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) ∈ V
49 fvex 6904 . . . . . . . . . . . . 13 (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) ∈ V
5048, 49opth 5476 . . . . . . . . . . . 12 (⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ ↔ ((1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = (1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) ∧ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))))
5150simprbi 496 . . . . . . . . . . 11 (⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ β†’ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)))
5247, 51syl 17 . . . . . . . . . 10 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)))
53 fvex 6904 . . . . . . . . . . . 12 ((mTypeβ€˜π‘‡)β€˜π‘£) ∈ V
54 vex 3477 . . . . . . . . . . . 12 π‘Ÿ ∈ V
5553, 54op2nd 7988 . . . . . . . . . . 11 (2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = π‘Ÿ
5655fveq2i 6894 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜π‘Ÿ)
5755fveq2i 6894 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜π‘Ÿ)
5852, 56, 573eqtr3g 2794 . . . . . . . . 9 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜π‘Ÿ) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜π‘Ÿ))
5917, 23, 58eqfnfvd 7035 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”))
601, 2, 9mrsubff1 34970 . . . . . . . . . . 11 (𝑇 ∈ mFS β†’ ((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝑅 ↑m 𝑅))
61 f1fveq 7264 . . . . . . . . . . 11 ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝑅 ↑m 𝑅) ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ 𝑓 = 𝑔))
6260, 61sylan 579 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ 𝑓 = 𝑔))
63 fvres 6910 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 ↑m 𝑉) β†’ (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘“))
64 fvres 6910 . . . . . . . . . . . 12 (𝑔 ∈ (𝑅 ↑m 𝑉) β†’ (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) = ((mRSubstβ€˜π‘‡)β€˜π‘”))
6563, 64eqeqan12d 2745 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6665adantl 481 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6762, 66bitr3d 281 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑓 = 𝑔 ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6867adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ (𝑓 = 𝑔 ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6959, 68mpbird 257 . . . . . . 7 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑓 = 𝑔)
7069fveq1d 6893 . . . . . 6 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ (π‘“β€˜π‘£) = (π‘”β€˜π‘£))
7170expr 456 . . . . 5 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘†β€˜π‘“) = (π‘†β€˜π‘”) β†’ (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
7271ralrimdva 3153 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((π‘†β€˜π‘“) = (π‘†β€˜π‘”) β†’ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
73 fvres 6910 . . . . . 6 (𝑓 ∈ (𝑅 ↑m 𝑉) β†’ ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (π‘†β€˜π‘“))
74 fvres 6910 . . . . . 6 (𝑔 ∈ (𝑅 ↑m 𝑉) β†’ ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) = (π‘†β€˜π‘”))
7573, 74eqeqan12d 2745 . . . . 5 ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) β†’ (((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ (π‘†β€˜π‘“) = (π‘†β€˜π‘”)))
7675adantl 481 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ (π‘†β€˜π‘“) = (π‘†β€˜π‘”)))
77 ffn 6717 . . . . . . 7 (𝑓:π‘‰βŸΆπ‘… β†’ 𝑓 Fn 𝑉)
78 ffn 6717 . . . . . . 7 (𝑔:π‘‰βŸΆπ‘… β†’ 𝑔 Fn 𝑉)
79 eqfnfv 7032 . . . . . . 7 ((𝑓 Fn 𝑉 ∧ 𝑔 Fn 𝑉) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8077, 78, 79syl2an 595 . . . . . 6 ((𝑓:π‘‰βŸΆπ‘… ∧ 𝑔:π‘‰βŸΆπ‘…) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8127, 43, 80syl2an 595 . . . . 5 ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8281adantl 481 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8372, 76, 823imtr4d 294 . . 3 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) β†’ 𝑓 = 𝑔))
8483ralrimivva 3199 . 2 (𝑇 ∈ mFS β†’ βˆ€π‘“ ∈ (𝑅 ↑m 𝑉)βˆ€π‘” ∈ (𝑅 ↑m 𝑉)(((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) β†’ 𝑓 = 𝑔))
85 dff13 7257 . 2 ((𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝐸 ↑m 𝐸) ↔ ((𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟢(𝐸 ↑m 𝐸) ∧ βˆ€π‘“ ∈ (𝑅 ↑m 𝑉)βˆ€π‘” ∈ (𝑅 ↑m 𝑉)(((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) β†’ 𝑓 = 𝑔)))
868, 84, 85sylanbrc 582 1 (𝑇 ∈ mFS β†’ (𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝐸 ↑m 𝐸))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   βŠ† wss 3948  βŸ¨cop 4634   Γ— cxp 5674   β†Ύ cres 5678   Fn wfn 6538  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€˜cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978   ↑m cmap 8826   ↑pm cpm 8827  mVRcmvar 34917  mTypecmty 34918  mTCcmtc 34920  mRExcmrex 34922  mExcmex 34923  mRSubstcmrsub 34926  mSubstcmsub 34927  mFScmfs 34932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-word 14472  df-concat 14528  df-s1 14553  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-0g 17394  df-gsum 17395  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-frmd 18772  df-mrex 34942  df-mex 34943  df-mrsub 34946  df-msub 34947  df-mfs 34952
This theorem is referenced by:  msubff1o  35013
  Copyright terms: Public domain W3C validator