Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff1 Structured version   Visualization version   GIF version

Theorem msubff1 32798
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff1.v 𝑉 = (mVR‘𝑇)
msubff1.r 𝑅 = (mREx‘𝑇)
msubff1.s 𝑆 = (mSubst‘𝑇)
msubff1.e 𝐸 = (mEx‘𝑇)
Assertion
Ref Expression
msubff1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝐸m 𝐸))

Proof of Theorem msubff1
Dummy variables 𝑓 𝑔 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff1.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubff1.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubff1.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubff1.e . . . 4 𝐸 = (mEx‘𝑇)
51, 2, 3, 4msubff 32772 . . 3 (𝑇 ∈ mFS → 𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))
6 mapsspm 8434 . . . 4 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
76a1i 11 . . 3 (𝑇 ∈ mFS → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
85, 7fssresd 6539 . 2 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝐸m 𝐸))
9 eqid 2821 . . . . . . . . . . . . 13 (mRSubst‘𝑇) = (mRSubst‘𝑇)
101, 2, 9mrsubff 32754 . . . . . . . . . . . 12 (𝑇 ∈ mFS → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
1110ad2antrr 724 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
12 simplrl 775 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅m 𝑉))
136, 12sseldi 3964 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 ∈ (𝑅pm 𝑉))
1411, 13ffvelrnd 6846 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅))
15 elmapi 8422 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
16 ffn 6508 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
1714, 15, 163syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) Fn 𝑅)
18 simplrr 776 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅m 𝑉))
196, 18sseldi 3964 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑔 ∈ (𝑅pm 𝑉))
2011, 19ffvelrnd 6846 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) ∈ (𝑅m 𝑅))
21 elmapi 8422 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) ∈ (𝑅m 𝑅) → ((mRSubst‘𝑇)‘𝑔):𝑅𝑅)
22 ffn 6508 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔):𝑅𝑅 → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
2320, 21, 223syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑔) Fn 𝑅)
24 simplrr 776 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (𝑆𝑓) = (𝑆𝑔))
2524fveq1d 6666 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))
2612adantr 483 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓 ∈ (𝑅m 𝑉))
27 elmapi 8422 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅m 𝑉) → 𝑓:𝑉𝑅)
2826, 27syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑓:𝑉𝑅)
29 ssidd 3989 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑉𝑉)
30 eqid 2821 . . . . . . . . . . . . . . . . . 18 (mTC‘𝑇) = (mTC‘𝑇)
31 eqid 2821 . . . . . . . . . . . . . . . . . 18 (mType‘𝑇) = (mType‘𝑇)
321, 30, 31mtyf2 32793 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
3332ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (mType‘𝑇):𝑉⟶(mTC‘𝑇))
34 simplrl 775 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑣𝑉)
3533, 34ffvelrnd 6846 . . . . . . . . . . . . . . 15 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇))
36 opelxpi 5586 . . . . . . . . . . . . . . 15 ((((mType‘𝑇)‘𝑣) ∈ (mTC‘𝑇) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3735, 36sylancom 590 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ ((mTC‘𝑇) × 𝑅))
3830, 4, 2mexval 32744 . . . . . . . . . . . . . 14 𝐸 = ((mTC‘𝑇) × 𝑅)
3937, 38eleqtrrdi 2924 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸)
401, 2, 3, 4, 9msubval 32767 . . . . . . . . . . . . 13 ((𝑓:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4128, 29, 39, 40syl3anc 1367 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑓)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4218adantr 483 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔 ∈ (𝑅m 𝑉))
43 elmapi 8422 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝑅m 𝑉) → 𝑔:𝑉𝑅)
4442, 43syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → 𝑔:𝑉𝑅)
451, 2, 3, 4, 9msubval 32767 . . . . . . . . . . . . 13 ((𝑔:𝑉𝑅𝑉𝑉 ∧ ⟨((mType‘𝑇)‘𝑣), 𝑟⟩ ∈ 𝐸) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4644, 29, 39, 45syl3anc 1367 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ((𝑆𝑔)‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
4725, 41, 463eqtr3d 2864 . . . . . . . . . . 11 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩)
48 fvex 6677 . . . . . . . . . . . . 13 (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∈ V
49 fvex 6677 . . . . . . . . . . . . 13 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) ∈ V
5048, 49opth 5360 . . . . . . . . . . . 12 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ ↔ ((1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = (1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))))
5150simprbi 499 . . . . . . . . . . 11 (⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ = ⟨(1st ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩))⟩ → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
5247, 51syl 17 . . . . . . . . . 10 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)))
53 fvex 6677 . . . . . . . . . . . 12 ((mType‘𝑇)‘𝑣) ∈ V
54 vex 3497 . . . . . . . . . . . 12 𝑟 ∈ V
5553, 54op2nd 7692 . . . . . . . . . . 11 (2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩) = 𝑟
5655fveq2i 6667 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑓)‘𝑟)
5755fveq2i 6667 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘⟨((mType‘𝑇)‘𝑣), 𝑟⟩)) = (((mRSubst‘𝑇)‘𝑔)‘𝑟)
5852, 56, 573eqtr3g 2879 . . . . . . . . 9 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) ∧ 𝑟𝑅) → (((mRSubst‘𝑇)‘𝑓)‘𝑟) = (((mRSubst‘𝑇)‘𝑔)‘𝑟))
5917, 23, 58eqfnfvd 6799 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔))
601, 2, 9mrsubff1 32756 . . . . . . . . . . 11 (𝑇 ∈ mFS → ((mRSubst‘𝑇) ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅))
61 f1fveq 7014 . . . . . . . . . . 11 ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝑅m 𝑅) ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
6260, 61sylan 582 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ 𝑓 = 𝑔))
63 fvres 6683 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅m 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = ((mRSubst‘𝑇)‘𝑓))
64 fvres 6683 . . . . . . . . . . . 12 (𝑔 ∈ (𝑅m 𝑉) → (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) = ((mRSubst‘𝑇)‘𝑔))
6563, 64eqeqan12d 2838 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6665adantl 484 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑓) = (((mRSubst‘𝑇) ↾ (𝑅m 𝑉))‘𝑔) ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6762, 66bitr3d 283 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6867adantr 483 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓 = 𝑔 ↔ ((mRSubst‘𝑇)‘𝑓) = ((mRSubst‘𝑇)‘𝑔)))
6959, 68mpbird 259 . . . . . . 7 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → 𝑓 = 𝑔)
7069fveq1d 6666 . . . . . 6 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ (𝑣𝑉 ∧ (𝑆𝑓) = (𝑆𝑔))) → (𝑓𝑣) = (𝑔𝑣))
7170expr 459 . . . . 5 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) ∧ 𝑣𝑉) → ((𝑆𝑓) = (𝑆𝑔) → (𝑓𝑣) = (𝑔𝑣)))
7271ralrimdva 3189 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → ((𝑆𝑓) = (𝑆𝑔) → ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
73 fvres 6683 . . . . . 6 (𝑓 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = (𝑆𝑓))
74 fvres 6683 . . . . . 6 (𝑔 ∈ (𝑅m 𝑉) → ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) = (𝑆𝑔))
7573, 74eqeqan12d 2838 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
7675adantl 484 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) ↔ (𝑆𝑓) = (𝑆𝑔)))
77 ffn 6508 . . . . . . 7 (𝑓:𝑉𝑅𝑓 Fn 𝑉)
78 ffn 6508 . . . . . . 7 (𝑔:𝑉𝑅𝑔 Fn 𝑉)
79 eqfnfv 6796 . . . . . . 7 ((𝑓 Fn 𝑉𝑔 Fn 𝑉) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8077, 78, 79syl2an 597 . . . . . 6 ((𝑓:𝑉𝑅𝑔:𝑉𝑅) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8127, 43, 80syl2an 597 . . . . 5 ((𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8281adantl 484 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (𝑓 = 𝑔 ↔ ∀𝑣𝑉 (𝑓𝑣) = (𝑔𝑣)))
8372, 76, 823imtr4d 296 . . 3 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅m 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉))) → (((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
8483ralrimivva 3191 . 2 (𝑇 ∈ mFS → ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔))
85 dff13 7007 . 2 ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝐸m 𝐸) ↔ ((𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)⟶(𝐸m 𝐸) ∧ ∀𝑓 ∈ (𝑅m 𝑉)∀𝑔 ∈ (𝑅m 𝑉)(((𝑆 ↾ (𝑅m 𝑉))‘𝑓) = ((𝑆 ↾ (𝑅m 𝑉))‘𝑔) → 𝑓 = 𝑔)))
868, 84, 85sylanbrc 585 1 (𝑇 ∈ mFS → (𝑆 ↾ (𝑅m 𝑉)):(𝑅m 𝑉)–1-1→(𝐸m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3935  cop 4566   × cxp 5547  cres 5551   Fn wfn 6344  wf 6345  1-1wf1 6346  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  m cmap 8400  pm cpm 8401  mVRcmvar 32703  mTypecmty 32704  mTCcmtc 32706  mRExcmrex 32708  mExcmex 32709  mRSubstcmrsub 32712  mSubstcmsub 32713  mFScmfs 32718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-frmd 18008  df-mrex 32728  df-mex 32729  df-mrsub 32732  df-msub 32733  df-mfs 32738
This theorem is referenced by:  msubff1o  32799
  Copyright terms: Public domain W3C validator