Step | Hyp | Ref
| Expression |
1 | | msubff1.v |
. . . 4
β’ π = (mVRβπ) |
2 | | msubff1.r |
. . . 4
β’ π
= (mRExβπ) |
3 | | msubff1.s |
. . . 4
β’ π = (mSubstβπ) |
4 | | msubff1.e |
. . . 4
β’ πΈ = (mExβπ) |
5 | 1, 2, 3, 4 | msubff 34509 |
. . 3
β’ (π β mFS β π:(π
βpm π)βΆ(πΈ βm πΈ)) |
6 | | mapsspm 8866 |
. . . 4
β’ (π
βm π) β (π
βpm π) |
7 | 6 | a1i 11 |
. . 3
β’ (π β mFS β (π
βm π) β (π
βpm π)) |
8 | 5, 7 | fssresd 6755 |
. 2
β’ (π β mFS β (π βΎ (π
βm π)):(π
βm π)βΆ(πΈ βm πΈ)) |
9 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(mRSubstβπ) =
(mRSubstβπ) |
10 | 1, 2, 9 | mrsubff 34491 |
. . . . . . . . . . . 12
β’ (π β mFS β
(mRSubstβπ):(π
βpm π)βΆ(π
βm π
)) |
11 | 10 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β (mRSubstβπ):(π
βpm π)βΆ(π
βm π
)) |
12 | | simplrl 775 |
. . . . . . . . . . . 12
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β π β (π
βm π)) |
13 | 6, 12 | sselid 3979 |
. . . . . . . . . . 11
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β π β (π
βpm π)) |
14 | 11, 13 | ffvelcdmd 7084 |
. . . . . . . . . 10
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β ((mRSubstβπ)βπ) β (π
βm π
)) |
15 | | elmapi 8839 |
. . . . . . . . . 10
β’
(((mRSubstβπ)βπ) β (π
βm π
) β ((mRSubstβπ)βπ):π
βΆπ
) |
16 | | ffn 6714 |
. . . . . . . . . 10
β’
(((mRSubstβπ)βπ):π
βΆπ
β ((mRSubstβπ)βπ) Fn π
) |
17 | 14, 15, 16 | 3syl 18 |
. . . . . . . . 9
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β ((mRSubstβπ)βπ) Fn π
) |
18 | | simplrr 776 |
. . . . . . . . . . . 12
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β π β (π
βm π)) |
19 | 6, 18 | sselid 3979 |
. . . . . . . . . . 11
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β π β (π
βpm π)) |
20 | 11, 19 | ffvelcdmd 7084 |
. . . . . . . . . 10
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β ((mRSubstβπ)βπ) β (π
βm π
)) |
21 | | elmapi 8839 |
. . . . . . . . . 10
β’
(((mRSubstβπ)βπ) β (π
βm π
) β ((mRSubstβπ)βπ):π
βΆπ
) |
22 | | ffn 6714 |
. . . . . . . . . 10
β’
(((mRSubstβπ)βπ):π
βΆπ
β ((mRSubstβπ)βπ) Fn π
) |
23 | 20, 21, 22 | 3syl 18 |
. . . . . . . . 9
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β ((mRSubstβπ)βπ) Fn π
) |
24 | | simplrr 776 |
. . . . . . . . . . . . 13
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β (πβπ) = (πβπ)) |
25 | 24 | fveq1d 6890 |
. . . . . . . . . . . 12
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β ((πβπ)ββ¨((mTypeβπ)βπ£), πβ©) = ((πβπ)ββ¨((mTypeβπ)βπ£), πβ©)) |
26 | 12 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β π β (π
βm π)) |
27 | | elmapi 8839 |
. . . . . . . . . . . . . 14
β’ (π β (π
βm π) β π:πβΆπ
) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . 13
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β π:πβΆπ
) |
29 | | ssidd 4004 |
. . . . . . . . . . . . 13
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β π β π) |
30 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(mTCβπ) =
(mTCβπ) |
31 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(mTypeβπ) =
(mTypeβπ) |
32 | 1, 30, 31 | mtyf2 34530 |
. . . . . . . . . . . . . . . . 17
β’ (π β mFS β
(mTypeβπ):πβΆ(mTCβπ)) |
33 | 32 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β (mTypeβπ):πβΆ(mTCβπ)) |
34 | | simplrl 775 |
. . . . . . . . . . . . . . . 16
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β π£ β π) |
35 | 33, 34 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . 15
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β ((mTypeβπ)βπ£) β (mTCβπ)) |
36 | | opelxpi 5712 |
. . . . . . . . . . . . . . 15
β’
((((mTypeβπ)βπ£) β (mTCβπ) β§ π β π
) β β¨((mTypeβπ)βπ£), πβ© β ((mTCβπ) Γ π
)) |
37 | 35, 36 | sylancom 588 |
. . . . . . . . . . . . . 14
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β β¨((mTypeβπ)βπ£), πβ© β ((mTCβπ) Γ π
)) |
38 | 30, 4, 2 | mexval 34481 |
. . . . . . . . . . . . . 14
β’ πΈ = ((mTCβπ) Γ π
) |
39 | 37, 38 | eleqtrrdi 2844 |
. . . . . . . . . . . . 13
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β β¨((mTypeβπ)βπ£), πβ© β πΈ) |
40 | 1, 2, 3, 4, 9 | msubval 34504 |
. . . . . . . . . . . . 13
β’ ((π:πβΆπ
β§ π β π β§ β¨((mTypeβπ)βπ£), πβ© β πΈ) β ((πβπ)ββ¨((mTypeβπ)βπ£), πβ©) = β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β©) |
41 | 28, 29, 39, 40 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β ((πβπ)ββ¨((mTypeβπ)βπ£), πβ©) = β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β©) |
42 | 18 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β π β (π
βm π)) |
43 | | elmapi 8839 |
. . . . . . . . . . . . . 14
β’ (π β (π
βm π) β π:πβΆπ
) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . . . 13
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β π:πβΆπ
) |
45 | 1, 2, 3, 4, 9 | msubval 34504 |
. . . . . . . . . . . . 13
β’ ((π:πβΆπ
β§ π β π β§ β¨((mTypeβπ)βπ£), πβ© β πΈ) β ((πβπ)ββ¨((mTypeβπ)βπ£), πβ©) = β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β©) |
46 | 44, 29, 39, 45 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β ((πβπ)ββ¨((mTypeβπ)βπ£), πβ©) = β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β©) |
47 | 25, 41, 46 | 3eqtr3d 2780 |
. . . . . . . . . . 11
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β© = β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β©) |
48 | | fvex 6901 |
. . . . . . . . . . . . 13
β’
(1st ββ¨((mTypeβπ)βπ£), πβ©) β V |
49 | | fvex 6901 |
. . . . . . . . . . . . 13
β’
(((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©)) β V |
50 | 48, 49 | opth 5475 |
. . . . . . . . . . . 12
β’
(β¨(1st ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β© = β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β© β ((1st
ββ¨((mTypeβπ)βπ£), πβ©) = (1st
ββ¨((mTypeβπ)βπ£), πβ©) β§ (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©)) = (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©)))) |
51 | 50 | simprbi 497 |
. . . . . . . . . . 11
β’
(β¨(1st ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β© = β¨(1st
ββ¨((mTypeβπ)βπ£), πβ©), (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))β© β (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©)) = (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))) |
52 | 47, 51 | syl 17 |
. . . . . . . . . 10
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©)) = (((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©))) |
53 | | fvex 6901 |
. . . . . . . . . . . 12
β’
((mTypeβπ)βπ£) β V |
54 | | vex 3478 |
. . . . . . . . . . . 12
β’ π β V |
55 | 53, 54 | op2nd 7980 |
. . . . . . . . . . 11
β’
(2nd ββ¨((mTypeβπ)βπ£), πβ©) = π |
56 | 55 | fveq2i 6891 |
. . . . . . . . . 10
β’
(((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©)) = (((mRSubstβπ)βπ)βπ) |
57 | 55 | fveq2i 6891 |
. . . . . . . . . 10
β’
(((mRSubstβπ)βπ)β(2nd
ββ¨((mTypeβπ)βπ£), πβ©)) = (((mRSubstβπ)βπ)βπ) |
58 | 52, 56, 57 | 3eqtr3g 2795 |
. . . . . . . . 9
β’ ((((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β§ π β π
) β (((mRSubstβπ)βπ)βπ) = (((mRSubstβπ)βπ)βπ)) |
59 | 17, 23, 58 | eqfnfvd 7032 |
. . . . . . . 8
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β ((mRSubstβπ)βπ) = ((mRSubstβπ)βπ)) |
60 | 1, 2, 9 | mrsubff1 34493 |
. . . . . . . . . . 11
β’ (π β mFS β
((mRSubstβπ) βΎ
(π
βm π)):(π
βm π)β1-1β(π
βm π
)) |
61 | | f1fveq 7257 |
. . . . . . . . . . 11
β’
((((mRSubstβπ)
βΎ (π
βm π)):(π
βm π)β1-1β(π
βm π
) β§ (π β (π
βm π) β§ π β (π
βm π))) β ((((mRSubstβπ) βΎ (π
βm π))βπ) = (((mRSubstβπ) βΎ (π
βm π))βπ) β π = π)) |
62 | 60, 61 | sylan 580 |
. . . . . . . . . 10
β’ ((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β ((((mRSubstβπ) βΎ (π
βm π))βπ) = (((mRSubstβπ) βΎ (π
βm π))βπ) β π = π)) |
63 | | fvres 6907 |
. . . . . . . . . . . 12
β’ (π β (π
βm π) β (((mRSubstβπ) βΎ (π
βm π))βπ) = ((mRSubstβπ)βπ)) |
64 | | fvres 6907 |
. . . . . . . . . . . 12
β’ (π β (π
βm π) β (((mRSubstβπ) βΎ (π
βm π))βπ) = ((mRSubstβπ)βπ)) |
65 | 63, 64 | eqeqan12d 2746 |
. . . . . . . . . . 11
β’ ((π β (π
βm π) β§ π β (π
βm π)) β ((((mRSubstβπ) βΎ (π
βm π))βπ) = (((mRSubstβπ) βΎ (π
βm π))βπ) β ((mRSubstβπ)βπ) = ((mRSubstβπ)βπ))) |
66 | 65 | adantl 482 |
. . . . . . . . . 10
β’ ((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β ((((mRSubstβπ) βΎ (π
βm π))βπ) = (((mRSubstβπ) βΎ (π
βm π))βπ) β ((mRSubstβπ)βπ) = ((mRSubstβπ)βπ))) |
67 | 62, 66 | bitr3d 280 |
. . . . . . . . 9
β’ ((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β (π = π β ((mRSubstβπ)βπ) = ((mRSubstβπ)βπ))) |
68 | 67 | adantr 481 |
. . . . . . . 8
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β (π = π β ((mRSubstβπ)βπ) = ((mRSubstβπ)βπ))) |
69 | 59, 68 | mpbird 256 |
. . . . . . 7
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β π = π) |
70 | 69 | fveq1d 6890 |
. . . . . 6
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ (π£ β π β§ (πβπ) = (πβπ))) β (πβπ£) = (πβπ£)) |
71 | 70 | expr 457 |
. . . . 5
β’ (((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β§ π£ β π) β ((πβπ) = (πβπ) β (πβπ£) = (πβπ£))) |
72 | 71 | ralrimdva 3154 |
. . . 4
β’ ((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β ((πβπ) = (πβπ) β βπ£ β π (πβπ£) = (πβπ£))) |
73 | | fvres 6907 |
. . . . . 6
β’ (π β (π
βm π) β ((π βΎ (π
βm π))βπ) = (πβπ)) |
74 | | fvres 6907 |
. . . . . 6
β’ (π β (π
βm π) β ((π βΎ (π
βm π))βπ) = (πβπ)) |
75 | 73, 74 | eqeqan12d 2746 |
. . . . 5
β’ ((π β (π
βm π) β§ π β (π
βm π)) β (((π βΎ (π
βm π))βπ) = ((π βΎ (π
βm π))βπ) β (πβπ) = (πβπ))) |
76 | 75 | adantl 482 |
. . . 4
β’ ((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β (((π βΎ (π
βm π))βπ) = ((π βΎ (π
βm π))βπ) β (πβπ) = (πβπ))) |
77 | | ffn 6714 |
. . . . . . 7
β’ (π:πβΆπ
β π Fn π) |
78 | | ffn 6714 |
. . . . . . 7
β’ (π:πβΆπ
β π Fn π) |
79 | | eqfnfv 7029 |
. . . . . . 7
β’ ((π Fn π β§ π Fn π) β (π = π β βπ£ β π (πβπ£) = (πβπ£))) |
80 | 77, 78, 79 | syl2an 596 |
. . . . . 6
β’ ((π:πβΆπ
β§ π:πβΆπ
) β (π = π β βπ£ β π (πβπ£) = (πβπ£))) |
81 | 27, 43, 80 | syl2an 596 |
. . . . 5
β’ ((π β (π
βm π) β§ π β (π
βm π)) β (π = π β βπ£ β π (πβπ£) = (πβπ£))) |
82 | 81 | adantl 482 |
. . . 4
β’ ((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β (π = π β βπ£ β π (πβπ£) = (πβπ£))) |
83 | 72, 76, 82 | 3imtr4d 293 |
. . 3
β’ ((π β mFS β§ (π β (π
βm π) β§ π β (π
βm π))) β (((π βΎ (π
βm π))βπ) = ((π βΎ (π
βm π))βπ) β π = π)) |
84 | 83 | ralrimivva 3200 |
. 2
β’ (π β mFS β βπ β (π
βm π)βπ β (π
βm π)(((π βΎ (π
βm π))βπ) = ((π βΎ (π
βm π))βπ) β π = π)) |
85 | | dff13 7250 |
. 2
β’ ((π βΎ (π
βm π)):(π
βm π)β1-1β(πΈ βm πΈ) β ((π βΎ (π
βm π)):(π
βm π)βΆ(πΈ βm πΈ) β§ βπ β (π
βm π)βπ β (π
βm π)(((π βΎ (π
βm π))βπ) = ((π βΎ (π
βm π))βπ) β π = π))) |
86 | 8, 84, 85 | sylanbrc 583 |
1
β’ (π β mFS β (π βΎ (π
βm π)):(π
βm π)β1-1β(πΈ βm πΈ)) |