Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff1 Structured version   Visualization version   GIF version

Theorem msubff1 34535
Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff1.v 𝑉 = (mVRβ€˜π‘‡)
msubff1.r 𝑅 = (mRExβ€˜π‘‡)
msubff1.s 𝑆 = (mSubstβ€˜π‘‡)
msubff1.e 𝐸 = (mExβ€˜π‘‡)
Assertion
Ref Expression
msubff1 (𝑇 ∈ mFS β†’ (𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝐸 ↑m 𝐸))

Proof of Theorem msubff1
Dummy variables 𝑓 𝑔 π‘Ÿ 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff1.v . . . 4 𝑉 = (mVRβ€˜π‘‡)
2 msubff1.r . . . 4 𝑅 = (mRExβ€˜π‘‡)
3 msubff1.s . . . 4 𝑆 = (mSubstβ€˜π‘‡)
4 msubff1.e . . . 4 𝐸 = (mExβ€˜π‘‡)
51, 2, 3, 4msubff 34509 . . 3 (𝑇 ∈ mFS β†’ 𝑆:(𝑅 ↑pm 𝑉)⟢(𝐸 ↑m 𝐸))
6 mapsspm 8866 . . . 4 (𝑅 ↑m 𝑉) βŠ† (𝑅 ↑pm 𝑉)
76a1i 11 . . 3 (𝑇 ∈ mFS β†’ (𝑅 ↑m 𝑉) βŠ† (𝑅 ↑pm 𝑉))
85, 7fssresd 6755 . 2 (𝑇 ∈ mFS β†’ (𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟢(𝐸 ↑m 𝐸))
9 eqid 2732 . . . . . . . . . . . . 13 (mRSubstβ€˜π‘‡) = (mRSubstβ€˜π‘‡)
101, 2, 9mrsubff 34491 . . . . . . . . . . . 12 (𝑇 ∈ mFS β†’ (mRSubstβ€˜π‘‡):(𝑅 ↑pm 𝑉)⟢(𝑅 ↑m 𝑅))
1110ad2antrr 724 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ (mRSubstβ€˜π‘‡):(𝑅 ↑pm 𝑉)⟢(𝑅 ↑m 𝑅))
12 simplrl 775 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑓 ∈ (𝑅 ↑m 𝑉))
136, 12sselid 3979 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑓 ∈ (𝑅 ↑pm 𝑉))
1411, 13ffvelcdmd 7084 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) ∈ (𝑅 ↑m 𝑅))
15 elmapi 8839 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘“) ∈ (𝑅 ↑m 𝑅) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“):π‘…βŸΆπ‘…)
16 ffn 6714 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘“):π‘…βŸΆπ‘… β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) Fn 𝑅)
1714, 15, 163syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) Fn 𝑅)
18 simplrr 776 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑔 ∈ (𝑅 ↑m 𝑉))
196, 18sselid 3979 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑔 ∈ (𝑅 ↑pm 𝑉))
2011, 19ffvelcdmd 7084 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”) ∈ (𝑅 ↑m 𝑅))
21 elmapi 8839 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘”) ∈ (𝑅 ↑m 𝑅) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”):π‘…βŸΆπ‘…)
22 ffn 6714 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘”):π‘…βŸΆπ‘… β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”) Fn 𝑅)
2320, 21, 223syl 18 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘”) Fn 𝑅)
24 simplrr 776 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))
2524fveq1d 6890 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((π‘†β€˜π‘“)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ((π‘†β€˜π‘”)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))
2612adantr 481 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑓 ∈ (𝑅 ↑m 𝑉))
27 elmapi 8839 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅 ↑m 𝑉) β†’ 𝑓:π‘‰βŸΆπ‘…)
2826, 27syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑓:π‘‰βŸΆπ‘…)
29 ssidd 4004 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑉 βŠ† 𝑉)
30 eqid 2732 . . . . . . . . . . . . . . . . . 18 (mTCβ€˜π‘‡) = (mTCβ€˜π‘‡)
31 eqid 2732 . . . . . . . . . . . . . . . . . 18 (mTypeβ€˜π‘‡) = (mTypeβ€˜π‘‡)
321, 30, 31mtyf2 34530 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ mFS β†’ (mTypeβ€˜π‘‡):π‘‰βŸΆ(mTCβ€˜π‘‡))
3332ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (mTypeβ€˜π‘‡):π‘‰βŸΆ(mTCβ€˜π‘‡))
34 simplrl 775 . . . . . . . . . . . . . . . 16 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑣 ∈ 𝑉)
3533, 34ffvelcdmd 7084 . . . . . . . . . . . . . . 15 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((mTypeβ€˜π‘‡)β€˜π‘£) ∈ (mTCβ€˜π‘‡))
36 opelxpi 5712 . . . . . . . . . . . . . . 15 ((((mTypeβ€˜π‘‡)β€˜π‘£) ∈ (mTCβ€˜π‘‡) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ ((mTCβ€˜π‘‡) Γ— 𝑅))
3735, 36sylancom 588 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ ((mTCβ€˜π‘‡) Γ— 𝑅))
3830, 4, 2mexval 34481 . . . . . . . . . . . . . 14 𝐸 = ((mTCβ€˜π‘‡) Γ— 𝑅)
3937, 38eleqtrrdi 2844 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ 𝐸)
401, 2, 3, 4, 9msubval 34504 . . . . . . . . . . . . 13 ((𝑓:π‘‰βŸΆπ‘… ∧ 𝑉 βŠ† 𝑉 ∧ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ 𝐸) β†’ ((π‘†β€˜π‘“)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4128, 29, 39, 40syl3anc 1371 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((π‘†β€˜π‘“)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4218adantr 481 . . . . . . . . . . . . . 14 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑔 ∈ (𝑅 ↑m 𝑉))
43 elmapi 8839 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝑅 ↑m 𝑉) β†’ 𝑔:π‘‰βŸΆπ‘…)
4442, 43syl 17 . . . . . . . . . . . . 13 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ 𝑔:π‘‰βŸΆπ‘…)
451, 2, 3, 4, 9msubval 34504 . . . . . . . . . . . . 13 ((𝑔:π‘‰βŸΆπ‘… ∧ 𝑉 βŠ† 𝑉 ∧ ⟨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ© ∈ 𝐸) β†’ ((π‘†β€˜π‘”)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4644, 29, 39, 45syl3anc 1371 . . . . . . . . . . . 12 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ((π‘†β€˜π‘”)β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
4725, 41, 463eqtr3d 2780 . . . . . . . . . . 11 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩)
48 fvex 6901 . . . . . . . . . . . . 13 (1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) ∈ V
49 fvex 6901 . . . . . . . . . . . . 13 (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) ∈ V
5048, 49opth 5475 . . . . . . . . . . . 12 (⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ ↔ ((1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = (1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) ∧ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))))
5150simprbi 497 . . . . . . . . . . 11 (⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ = ⟨(1st β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©), (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©))⟩ β†’ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)))
5247, 51syl 17 . . . . . . . . . 10 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)))
53 fvex 6901 . . . . . . . . . . . 12 ((mTypeβ€˜π‘‡)β€˜π‘£) ∈ V
54 vex 3478 . . . . . . . . . . . 12 π‘Ÿ ∈ V
5553, 54op2nd 7980 . . . . . . . . . . 11 (2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©) = π‘Ÿ
5655fveq2i 6891 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜π‘Ÿ)
5755fveq2i 6891 . . . . . . . . . 10 (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜(2nd β€˜βŸ¨((mTypeβ€˜π‘‡)β€˜π‘£), π‘ŸβŸ©)) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜π‘Ÿ)
5852, 56, 573eqtr3g 2795 . . . . . . . . 9 ((((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) ∧ π‘Ÿ ∈ 𝑅) β†’ (((mRSubstβ€˜π‘‡)β€˜π‘“)β€˜π‘Ÿ) = (((mRSubstβ€˜π‘‡)β€˜π‘”)β€˜π‘Ÿ))
5917, 23, 58eqfnfvd 7032 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”))
601, 2, 9mrsubff1 34493 . . . . . . . . . . 11 (𝑇 ∈ mFS β†’ ((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝑅 ↑m 𝑅))
61 f1fveq 7257 . . . . . . . . . . 11 ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝑅 ↑m 𝑅) ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ 𝑓 = 𝑔))
6260, 61sylan 580 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ 𝑓 = 𝑔))
63 fvres 6907 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 ↑m 𝑉) β†’ (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘“))
64 fvres 6907 . . . . . . . . . . . 12 (𝑔 ∈ (𝑅 ↑m 𝑉) β†’ (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) = ((mRSubstβ€˜π‘‡)β€˜π‘”))
6563, 64eqeqan12d 2746 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6665adantl 482 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (((mRSubstβ€˜π‘‡) β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6762, 66bitr3d 280 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑓 = 𝑔 ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6867adantr 481 . . . . . . . 8 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ (𝑓 = 𝑔 ↔ ((mRSubstβ€˜π‘‡)β€˜π‘“) = ((mRSubstβ€˜π‘‡)β€˜π‘”)))
6959, 68mpbird 256 . . . . . . 7 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ 𝑓 = 𝑔)
7069fveq1d 6890 . . . . . 6 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ (𝑣 ∈ 𝑉 ∧ (π‘†β€˜π‘“) = (π‘†β€˜π‘”))) β†’ (π‘“β€˜π‘£) = (π‘”β€˜π‘£))
7170expr 457 . . . . 5 (((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) ∧ 𝑣 ∈ 𝑉) β†’ ((π‘†β€˜π‘“) = (π‘†β€˜π‘”) β†’ (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
7271ralrimdva 3154 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ ((π‘†β€˜π‘“) = (π‘†β€˜π‘”) β†’ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
73 fvres 6907 . . . . . 6 (𝑓 ∈ (𝑅 ↑m 𝑉) β†’ ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = (π‘†β€˜π‘“))
74 fvres 6907 . . . . . 6 (𝑔 ∈ (𝑅 ↑m 𝑉) β†’ ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) = (π‘†β€˜π‘”))
7573, 74eqeqan12d 2746 . . . . 5 ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) β†’ (((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ (π‘†β€˜π‘“) = (π‘†β€˜π‘”)))
7675adantl 482 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) ↔ (π‘†β€˜π‘“) = (π‘†β€˜π‘”)))
77 ffn 6714 . . . . . . 7 (𝑓:π‘‰βŸΆπ‘… β†’ 𝑓 Fn 𝑉)
78 ffn 6714 . . . . . . 7 (𝑔:π‘‰βŸΆπ‘… β†’ 𝑔 Fn 𝑉)
79 eqfnfv 7029 . . . . . . 7 ((𝑓 Fn 𝑉 ∧ 𝑔 Fn 𝑉) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8077, 78, 79syl2an 596 . . . . . 6 ((𝑓:π‘‰βŸΆπ‘… ∧ 𝑔:π‘‰βŸΆπ‘…) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8127, 43, 80syl2an 596 . . . . 5 ((𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8281adantl 482 . . . 4 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (𝑓 = 𝑔 ↔ βˆ€π‘£ ∈ 𝑉 (π‘“β€˜π‘£) = (π‘”β€˜π‘£)))
8372, 76, 823imtr4d 293 . . 3 ((𝑇 ∈ mFS ∧ (𝑓 ∈ (𝑅 ↑m 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉))) β†’ (((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) β†’ 𝑓 = 𝑔))
8483ralrimivva 3200 . 2 (𝑇 ∈ mFS β†’ βˆ€π‘“ ∈ (𝑅 ↑m 𝑉)βˆ€π‘” ∈ (𝑅 ↑m 𝑉)(((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) β†’ 𝑓 = 𝑔))
85 dff13 7250 . 2 ((𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝐸 ↑m 𝐸) ↔ ((𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)⟢(𝐸 ↑m 𝐸) ∧ βˆ€π‘“ ∈ (𝑅 ↑m 𝑉)βˆ€π‘” ∈ (𝑅 ↑m 𝑉)(((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘“) = ((𝑆 β†Ύ (𝑅 ↑m 𝑉))β€˜π‘”) β†’ 𝑓 = 𝑔)))
868, 84, 85sylanbrc 583 1 (𝑇 ∈ mFS β†’ (𝑆 β†Ύ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1β†’(𝐸 ↑m 𝐸))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947  βŸ¨cop 4633   Γ— cxp 5673   β†Ύ cres 5677   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970   ↑m cmap 8816   ↑pm cpm 8817  mVRcmvar 34440  mTypecmty 34441  mTCcmtc 34443  mRExcmrex 34445  mExcmex 34446  mRSubstcmrsub 34449  mSubstcmsub 34450  mFScmfs 34455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-frmd 18726  df-mrex 34465  df-mex 34466  df-mrsub 34469  df-msub 34470  df-mfs 34475
This theorem is referenced by:  msubff1o  34536
  Copyright terms: Public domain W3C validator