![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > membpartlem19 | Structured version Visualization version GIF version |
Description: Together with disjlem19 37671, this is former prtlem19 37748. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 21-Oct-2021.) |
Ref | Expression |
---|---|
membpartlem19 | ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmembpart2 37640 | . . . 4 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
2 | n0el2 37202 | . . . . . . . 8 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | |
3 | 2 | biimpi 215 | . . . . . . 7 ⊢ (¬ ∅ ∈ 𝐴 → dom (◡ E ↾ 𝐴) = 𝐴) |
4 | 3 | ad2antll 728 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → dom (◡ E ↾ 𝐴) = 𝐴) |
5 | 4 | eleq2d 2820 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom (◡ E ↾ 𝐴) ↔ 𝑢 ∈ 𝐴)) |
6 | eldisjlem19 37680 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | |
7 | 6 | adantrd 493 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
8 | 7 | imp 408 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴)) |
9 | 8 | expd 417 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom (◡ E ↾ 𝐴) → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
10 | 5, 9 | sylbird 260 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ 𝐴 → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
11 | 1, 10 | sylan2b 595 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ MembPart 𝐴) → (𝑢 ∈ 𝐴 → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
12 | 11 | impd 412 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ MembPart 𝐴) → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴)) |
13 | 12 | ex 414 | 1 ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∅c0 4323 E cep 5580 ◡ccnv 5676 dom cdm 5677 ↾ cres 5679 [cec 8701 ∼ ccoels 37044 ElDisj weldisj 37079 MembPart wmembpart 37084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-qs 8709 df-coss 37281 df-coels 37282 df-cnvrefrel 37397 df-dmqs 37509 df-disjALTV 37575 df-eldisj 37577 df-part 37636 df-membpart 37638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |