Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  membpartlem19 Structured version   Visualization version   GIF version

Theorem membpartlem19 38789
Description: Together with disjlem19 38779, this is former prtlem19 38857. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 21-Oct-2021.)
Assertion
Ref Expression
membpartlem19 (𝐵𝑉 → ( MembPart 𝐴 → ((𝑢𝐴𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑉

Proof of Theorem membpartlem19
StepHypRef Expression
1 dfmembpart2 38748 . . . 4 ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴))
2 n0el2 38303 . . . . . . . 8 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
32biimpi 216 . . . . . . 7 (¬ ∅ ∈ 𝐴 → dom ( E ↾ 𝐴) = 𝐴)
43ad2antll 729 . . . . . 6 ((𝐵𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → dom ( E ↾ 𝐴) = 𝐴)
54eleq2d 2814 . . . . 5 ((𝐵𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom ( E ↾ 𝐴) ↔ 𝑢𝐴))
6 eldisjlem19 38788 . . . . . . . 8 (𝐵𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
76adantrd 491 . . . . . . 7 (𝐵𝑉 → (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
87imp 406 . . . . . 6 ((𝐵𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → ((𝑢 ∈ dom ( E ↾ 𝐴) ∧ 𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴))
98expd 415 . . . . 5 ((𝐵𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom ( E ↾ 𝐴) → (𝐵𝑢𝑢 = [𝐵] ∼ 𝐴)))
105, 9sylbird 260 . . . 4 ((𝐵𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢𝐴 → (𝐵𝑢𝑢 = [𝐵] ∼ 𝐴)))
111, 10sylan2b 594 . . 3 ((𝐵𝑉 ∧ MembPart 𝐴) → (𝑢𝐴 → (𝐵𝑢𝑢 = [𝐵] ∼ 𝐴)))
1211impd 410 . 2 ((𝐵𝑉 ∧ MembPart 𝐴) → ((𝑢𝐴𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴))
1312ex 412 1 (𝐵𝑉 → ( MembPart 𝐴 → ((𝑢𝐴𝐵𝑢) → 𝑢 = [𝐵] ∼ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4284   E cep 5518  ccnv 5618  dom cdm 5619  cres 5621  [cec 8623  ccoels 38156   ElDisj weldisj 38191   MembPart wmembpart 38196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631  df-coss 38388  df-coels 38389  df-cnvrefrel 38504  df-dmqs 38616  df-disjALTV 38683  df-eldisj 38685  df-part 38744  df-membpart 38746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator