| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > membpartlem19 | Structured version Visualization version GIF version | ||
| Description: Together with disjlem19 38793, this is former prtlem19 38871. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| membpartlem19 | ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmembpart2 38762 | . . . 4 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
| 2 | n0el2 38317 | . . . . . . . 8 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | |
| 3 | 2 | biimpi 216 | . . . . . . 7 ⊢ (¬ ∅ ∈ 𝐴 → dom (◡ E ↾ 𝐴) = 𝐴) |
| 4 | 3 | ad2antll 729 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → dom (◡ E ↾ 𝐴) = 𝐴) |
| 5 | 4 | eleq2d 2814 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom (◡ E ↾ 𝐴) ↔ 𝑢 ∈ 𝐴)) |
| 6 | eldisjlem19 38802 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | |
| 7 | 6 | adantrd 491 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
| 8 | 7 | imp 406 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴)) |
| 9 | 8 | expd 415 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom (◡ E ↾ 𝐴) → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
| 10 | 5, 9 | sylbird 260 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ 𝐴 → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
| 11 | 1, 10 | sylan2b 594 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ MembPart 𝐴) → (𝑢 ∈ 𝐴 → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
| 12 | 11 | impd 410 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ MembPart 𝐴) → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴)) |
| 13 | 12 | ex 412 | 1 ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 E cep 5537 ◡ccnv 5637 dom cdm 5638 ↾ cres 5640 [cec 8669 ∼ ccoels 38170 ElDisj weldisj 38205 MembPart wmembpart 38210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 df-coss 38402 df-coels 38403 df-cnvrefrel 38518 df-dmqs 38630 df-disjALTV 38697 df-eldisj 38699 df-part 38758 df-membpart 38760 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |