| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > membpartlem19 | Structured version Visualization version GIF version | ||
| Description: Together with disjlem19 38819, this is former prtlem19 38896. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| membpartlem19 | ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmembpart2 38788 | . . . 4 ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | |
| 2 | n0el2 38351 | . . . . . . . 8 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | |
| 3 | 2 | biimpi 216 | . . . . . . 7 ⊢ (¬ ∅ ∈ 𝐴 → dom (◡ E ↾ 𝐴) = 𝐴) |
| 4 | 3 | ad2antll 729 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → dom (◡ E ↾ 𝐴) = 𝐴) |
| 5 | 4 | eleq2d 2820 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom (◡ E ↾ 𝐴) ↔ 𝑢 ∈ 𝐴)) |
| 6 | eldisjlem19 38828 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | |
| 7 | 6 | adantrd 491 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
| 8 | 7 | imp 406 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴)) |
| 9 | 8 | expd 415 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ dom (◡ E ↾ 𝐴) → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
| 10 | 5, 9 | sylbird 260 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) → (𝑢 ∈ 𝐴 → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
| 11 | 1, 10 | sylan2b 594 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ MembPart 𝐴) → (𝑢 ∈ 𝐴 → (𝐵 ∈ 𝑢 → 𝑢 = [𝐵] ∼ 𝐴))) |
| 12 | 11 | impd 410 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ MembPart 𝐴) → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴)) |
| 13 | 12 | ex 412 | 1 ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 E cep 5552 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 [cec 8717 ∼ ccoels 38200 ElDisj weldisj 38235 MembPart wmembpart 38240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 df-qs 8725 df-coss 38429 df-coels 38430 df-cnvrefrel 38545 df-dmqs 38657 df-disjALTV 38723 df-eldisj 38725 df-part 38784 df-membpart 38786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |