Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgr0vtxlem | Structured version Visualization version GIF version |
Description: Lemma for nbgr0vtx 27626 and nbgr0edg 27627. (Contributed by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr0vtxlem.v | ⊢ (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
Ref | Expression |
---|---|
nbgr0vtxlem | ⊢ (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . . . . . 8 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 27606 | . . . . . . 7 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒}) |
4 | 3 | ad2antrl 724 | . . . . . 6 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒}) |
5 | nbgr0vtxlem.v | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
6 | 5 | ad2antll 725 | . . . . . . 7 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
7 | rabeq0 4315 | . . . . . . 7 ⊢ ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
8 | 6, 7 | sylibr 233 | . . . . . 6 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅) |
9 | 4, 8 | eqtrd 2778 | . . . . 5 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = ∅) |
10 | 9 | expcom 413 | . . . 4 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅)) |
11 | 10 | ex 412 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝜑 → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅))) |
12 | 11 | com23 86 | . 2 ⊢ (𝐾 ∈ (Vtx‘𝐺) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅))) |
13 | df-nel 3049 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
14 | 1 | nbgrnvtx0 27609 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
15 | 13, 14 | sylbir 234 | . . 3 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
16 | 15 | a1d 25 | . 2 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)) |
17 | nbgrprc0 27604 | . . 3 ⊢ (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅) | |
18 | 17 | a1d 25 | . 2 ⊢ (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)) |
19 | 12, 16, 18 | pm2.61nii 184 | 1 ⊢ (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 {csn 4558 {cpr 4560 ‘cfv 6418 (class class class)co 7255 Vtxcvtx 27269 Edgcedg 27320 NeighbVtx cnbgr 27602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-nbgr 27603 |
This theorem is referenced by: nbgr0vtx 27626 nbgr0edg 27627 nbgr1vtx 27628 |
Copyright terms: Public domain | W3C validator |