![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgr0vtxlem | Structured version Visualization version GIF version |
Description: Lemma for nbgr0vtx 28610 and nbgr0edg 28611. (Contributed by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr0vtxlem.v | ⊢ (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
Ref | Expression |
---|---|
nbgr0vtxlem | ⊢ (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2732 | . . . . . . . 8 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 28590 | . . . . . . 7 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒}) |
4 | 3 | ad2antrl 726 | . . . . . 6 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒}) |
5 | nbgr0vtxlem.v | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
6 | 5 | ad2antll 727 | . . . . . . 7 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
7 | rabeq0 4384 | . . . . . . 7 ⊢ ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
8 | 6, 7 | sylibr 233 | . . . . . 6 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅) |
9 | 4, 8 | eqtrd 2772 | . . . . 5 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = ∅) |
10 | 9 | expcom 414 | . . . 4 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅)) |
11 | 10 | ex 413 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝜑 → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅))) |
12 | 11 | com23 86 | . 2 ⊢ (𝐾 ∈ (Vtx‘𝐺) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅))) |
13 | df-nel 3047 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
14 | 1 | nbgrnvtx0 28593 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
15 | 13, 14 | sylbir 234 | . . 3 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
16 | 15 | a1d 25 | . 2 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)) |
17 | nbgrprc0 28588 | . . 3 ⊢ (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅) | |
18 | 17 | a1d 25 | . 2 ⊢ (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)) |
19 | 12, 16, 18 | pm2.61nii 184 | 1 ⊢ (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 ∀wral 3061 ∃wrex 3070 {crab 3432 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 {csn 4628 {cpr 4630 ‘cfv 6543 (class class class)co 7408 Vtxcvtx 28253 Edgcedg 28304 NeighbVtx cnbgr 28586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-nbgr 28587 |
This theorem is referenced by: nbgr0vtx 28610 nbgr0edg 28611 nbgr1vtx 28612 |
Copyright terms: Public domain | W3C validator |