MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgr0vtxlem Structured version   Visualization version   GIF version

Theorem nbgr0vtxlem 27143
Description: Lemma for nbgr0vtx 27144 and nbgr0edg 27145. (Contributed by AV, 15-Nov-2020.)
Hypothesis
Ref Expression
nbgr0vtxlem.v (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
Assertion
Ref Expression
nbgr0vtxlem (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)
Distinct variable groups:   𝑒,𝐺,𝑛   𝑒,𝐾,𝑛
Allowed substitution hints:   𝜑(𝑒,𝑛)

Proof of Theorem nbgr0vtxlem
StepHypRef Expression
1 eqid 2822 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2822 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrval 27124 . . . . . . 7 (𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒})
43ad2antrl 727 . . . . . 6 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒})
5 nbgr0vtxlem.v . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
65ad2antll 728 . . . . . . 7 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
7 rabeq0 4310 . . . . . . 7 ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
86, 7sylibr 237 . . . . . 6 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅)
94, 8eqtrd 2857 . . . . 5 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = ∅)
109expcom 417 . . . 4 ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅))
1110ex 416 . . 3 (𝐾 ∈ (Vtx‘𝐺) → (𝜑 → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅)))
1211com23 86 . 2 (𝐾 ∈ (Vtx‘𝐺) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)))
13 df-nel 3116 . . . 4 (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺))
141nbgrnvtx0 27127 . . . 4 (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
1513, 14sylbir 238 . . 3 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
1615a1d 25 . 2 𝐾 ∈ (Vtx‘𝐺) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅))
17 nbgrprc0 27122 . . 3 (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅)
1817a1d 25 . 2 (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅))
1912, 16, 18pm2.61nii 187 1 (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2114  wnel 3115  wral 3130  wrex 3131  {crab 3134  Vcvv 3469  cdif 3905  wss 3908  c0 4265  {csn 4539  {cpr 4541  cfv 6334  (class class class)co 7140  Vtxcvtx 26787  Edgcedg 26838   NeighbVtx cnbgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-nbgr 27121
This theorem is referenced by:  nbgr0vtx  27144  nbgr0edg  27145  nbgr1vtx  27146
  Copyright terms: Public domain W3C validator