MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrnbgr0nb Structured version   Visualization version   GIF version

Theorem uhgrnbgr0nb 27134
Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Assertion
Ref Expression
uhgrnbgr0nb ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Distinct variable groups:   𝑒,𝐺   𝑒,𝑁

Proof of Theorem uhgrnbgr0nb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2820 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2820 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbuhgr 27123 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantlr 713 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 df-nel 3123 . . . . . . . . . . . . . 14 (𝑁𝑒 ↔ ¬ 𝑁𝑒)
6 prssg 4745 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
7 simpl 485 . . . . . . . . . . . . . . . . 17 ((𝑁𝑒𝑛𝑒) → 𝑁𝑒)
86, 7syl6bir 256 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
98ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
109con3d 155 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (¬ 𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
115, 10syl5bi 244 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
1211ralimdva 3176 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒))
1312imp 409 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒)
14 ralnex 3235 . . . . . . . . . . 11 (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1513, 14sylib 220 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1615expcom 416 . . . . . . . . 9 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1716expd 418 . . . . . . . 8 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → (𝐺 ∈ UHGraph → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)))
1817impcom 410 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1918expdimp 455 . . . . . 6 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
2019ralrimiv 3180 . . . . 5 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
21 rabeq0 4331 . . . . 5 ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
2220, 21sylibr 236 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅)
234, 22eqtrd 2855 . . 3 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2423expcom 416 . 2 (𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
25 id 22 . . . . 5 𝑁 ∈ V → ¬ 𝑁 ∈ V)
2625intnand 491 . . . 4 𝑁 ∈ V → ¬ (𝐺 ∈ V ∧ 𝑁 ∈ V))
27 nbgrprc0 27114 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2826, 27syl 17 . . 3 𝑁 ∈ V → (𝐺 NeighbVtx 𝑁) = ∅)
2928a1d 25 . 2 𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
3024, 29pm2.61i 184 1 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  wnel 3122  wral 3137  wrex 3138  {crab 3141  Vcvv 3491  cdif 3926  wss 3929  c0 4284  {csn 4560  {cpr 4562  cfv 6348  (class class class)co 7149  Vtxcvtx 26779  Edgcedg 26830  UHGraphcuhgr 26839   NeighbVtx cnbgr 27112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-nel 3123  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-edg 26831  df-uhgr 26841  df-nbgr 27113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator