MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrnbgr0nb Structured version   Visualization version   GIF version

Theorem uhgrnbgr0nb 28878
Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Assertion
Ref Expression
uhgrnbgr0nb ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Distinct variable groups:   𝑒,𝐺   𝑒,𝑁

Proof of Theorem uhgrnbgr0nb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2730 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbuhgr 28867 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantlr 711 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 df-nel 3045 . . . . . . . . . . . . . 14 (𝑁𝑒 ↔ ¬ 𝑁𝑒)
6 prssg 4821 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
7 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝑁𝑒𝑛𝑒) → 𝑁𝑒)
86, 7syl6bir 253 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
98ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
109con3d 152 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (¬ 𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
115, 10biimtrid 241 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
1211ralimdva 3165 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒))
1312imp 405 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒)
14 ralnex 3070 . . . . . . . . . . 11 (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1513, 14sylib 217 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1615expcom 412 . . . . . . . . 9 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1716expd 414 . . . . . . . 8 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → (𝐺 ∈ UHGraph → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)))
1817impcom 406 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1918expdimp 451 . . . . . 6 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
2019ralrimiv 3143 . . . . 5 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
21 rabeq0 4383 . . . . 5 ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
2220, 21sylibr 233 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅)
234, 22eqtrd 2770 . . 3 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2423expcom 412 . 2 (𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
25 id 22 . . . . 5 𝑁 ∈ V → ¬ 𝑁 ∈ V)
2625intnand 487 . . . 4 𝑁 ∈ V → ¬ (𝐺 ∈ V ∧ 𝑁 ∈ V))
27 nbgrprc0 28858 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2826, 27syl 17 . . 3 𝑁 ∈ V → (𝐺 NeighbVtx 𝑁) = ∅)
2928a1d 25 . 2 𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
3024, 29pm2.61i 182 1 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wcel 2104  wnel 3044  wral 3059  wrex 3068  {crab 3430  Vcvv 3472  cdif 3944  wss 3947  c0 4321  {csn 4627  {cpr 4629  cfv 6542  (class class class)co 7411  Vtxcvtx 28523  Edgcedg 28574  UHGraphcuhgr 28583   NeighbVtx cnbgr 28856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-edg 28575  df-uhgr 28585  df-nbgr 28857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator