MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrnbgr0nb Structured version   Visualization version   GIF version

Theorem uhgrnbgr0nb 29334
Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Assertion
Ref Expression
uhgrnbgr0nb ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Distinct variable groups:   𝑒,𝐺   𝑒,𝑁

Proof of Theorem uhgrnbgr0nb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2733 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbuhgr 29323 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantlr 715 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 df-nel 3034 . . . . . . . . . . . . . 14 (𝑁𝑒 ↔ ¬ 𝑁𝑒)
6 prssg 4770 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
7 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑁𝑒𝑛𝑒) → 𝑁𝑒)
86, 7biimtrrdi 254 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
98ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
109con3d 152 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (¬ 𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
115, 10biimtrid 242 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
1211ralimdva 3145 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒))
1312imp 406 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒)
14 ralnex 3059 . . . . . . . . . . 11 (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1513, 14sylib 218 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1615expcom 413 . . . . . . . . 9 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1716expd 415 . . . . . . . 8 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → (𝐺 ∈ UHGraph → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)))
1817impcom 407 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1918expdimp 452 . . . . . 6 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
2019ralrimiv 3124 . . . . 5 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
21 rabeq0 4337 . . . . 5 ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
2220, 21sylibr 234 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅)
234, 22eqtrd 2768 . . 3 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2423expcom 413 . 2 (𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
25 id 22 . . . . 5 𝑁 ∈ V → ¬ 𝑁 ∈ V)
2625intnand 488 . . . 4 𝑁 ∈ V → ¬ (𝐺 ∈ V ∧ 𝑁 ∈ V))
27 nbgrprc0 29314 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2826, 27syl 17 . . 3 𝑁 ∈ V → (𝐺 NeighbVtx 𝑁) = ∅)
2928a1d 25 . 2 𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
3024, 29pm2.61i 182 1 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wnel 3033  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  wss 3898  c0 4282  {csn 4575  {cpr 4577  cfv 6486  (class class class)co 7352  Vtxcvtx 28976  Edgcedg 29027  UHGraphcuhgr 29036   NeighbVtx cnbgr 29312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-edg 29028  df-uhgr 29038  df-nbgr 29313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator