Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
3 | 1, 2 | nbuhgr 27613 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
4 | 3 | adantlr 711 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒}) |
5 | | df-nel 3049 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∉ 𝑒 ↔ ¬ 𝑁 ∈ 𝑒) |
6 | | prssg 4749 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
7 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) → 𝑁 ∈ 𝑒) |
8 | 6, 7 | syl6bir 253 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ({𝑁, 𝑛} ⊆ 𝑒 → 𝑁 ∈ 𝑒)) |
9 | 8 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑁, 𝑛} ⊆ 𝑒 → 𝑁 ∈ 𝑒)) |
10 | 9 | con3d 152 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (¬ 𝑁 ∈ 𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒)) |
11 | 5, 10 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑁 ∉ 𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒)) |
12 | 11 | ralimdva 3102 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → (∀𝑒 ∈ (Edg‘𝐺)𝑁 ∉ 𝑒 → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒)) |
13 | 12 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁 ∉ 𝑒) → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒) |
14 | | ralnex 3163 |
. . . . . . . . . . 11
⊢
(∀𝑒 ∈
(Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒) |
15 | 13, 14 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁 ∉ 𝑒) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒) |
16 | 15 | expcom 413 |
. . . . . . . . 9
⊢
(∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒 → ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)) |
17 | 16 | expd 415 |
. . . . . . . 8
⊢
(∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒 → (𝐺 ∈ UHGraph → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))) |
18 | 17 | impcom 407 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)) |
19 | 18 | expdimp 452 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) ∧ 𝑁 ∈ V) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)) |
20 | 19 | ralrimiv 3106 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) ∧ 𝑁 ∈ V) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒) |
21 | | rabeq0 4315 |
. . . . 5
⊢ ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒) |
22 | 20, 21 | sylibr 233 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) ∧ 𝑁 ∈ V) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅) |
23 | 4, 22 | eqtrd 2778 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
24 | 23 | expcom 413 |
. 2
⊢ (𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)) |
25 | | id 22 |
. . . . 5
⊢ (¬
𝑁 ∈ V → ¬
𝑁 ∈
V) |
26 | 25 | intnand 488 |
. . . 4
⊢ (¬
𝑁 ∈ V → ¬
(𝐺 ∈ V ∧ 𝑁 ∈ V)) |
27 | | nbgrprc0 27604 |
. . . 4
⊢ (¬
(𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅) |
28 | 26, 27 | syl 17 |
. . 3
⊢ (¬
𝑁 ∈ V → (𝐺 NeighbVtx 𝑁) = ∅) |
29 | 28 | a1d 25 |
. 2
⊢ (¬
𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)) |
30 | 24, 29 | pm2.61i 182 |
1
⊢ ((𝐺 ∈ UHGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑁 ∉ 𝑒) → (𝐺 NeighbVtx 𝑁) = ∅) |