MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrnbgr0nb Structured version   Visualization version   GIF version

Theorem uhgrnbgr0nb 27721
Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 26-Oct-2020.)
Assertion
Ref Expression
uhgrnbgr0nb ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Distinct variable groups:   𝑒,𝐺   𝑒,𝑁

Proof of Theorem uhgrnbgr0nb
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2738 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbuhgr 27710 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
43adantlr 712 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒})
5 df-nel 3050 . . . . . . . . . . . . . 14 (𝑁𝑒 ↔ ¬ 𝑁𝑒)
6 prssg 4752 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
7 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑁𝑒𝑛𝑒) → 𝑁𝑒)
86, 7syl6bir 253 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
98ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑁, 𝑛} ⊆ 𝑒𝑁𝑒))
109con3d 152 . . . . . . . . . . . . . 14 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (¬ 𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
115, 10syl5bi 241 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑁𝑒 → ¬ {𝑁, 𝑛} ⊆ 𝑒))
1211ralimdva 3108 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒))
1312imp 407 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒)
14 ralnex 3167 . . . . . . . . . . 11 (∀𝑒 ∈ (Edg‘𝐺) ¬ {𝑁, 𝑛} ⊆ 𝑒 ↔ ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1513, 14sylib 217 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
1615expcom 414 . . . . . . . . 9 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → ((𝐺 ∈ UHGraph ∧ (𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}))) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1716expd 416 . . . . . . . 8 (∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒 → (𝐺 ∈ UHGraph → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)))
1817impcom 408 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → ((𝑁 ∈ V ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
1918expdimp 453 . . . . . 6 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒))
2019ralrimiv 3102 . . . . 5 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
21 rabeq0 4318 . . . . 5 ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒)
2220, 21sylibr 233 . . . 4 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝑛} ⊆ 𝑒} = ∅)
234, 22eqtrd 2778 . . 3 (((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2423expcom 414 . 2 (𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
25 id 22 . . . . 5 𝑁 ∈ V → ¬ 𝑁 ∈ V)
2625intnand 489 . . . 4 𝑁 ∈ V → ¬ (𝐺 ∈ V ∧ 𝑁 ∈ V))
27 nbgrprc0 27701 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 NeighbVtx 𝑁) = ∅)
2826, 27syl 17 . . 3 𝑁 ∈ V → (𝐺 NeighbVtx 𝑁) = ∅)
2928a1d 25 . 2 𝑁 ∈ V → ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅))
3024, 29pm2.61i 182 1 ((𝐺 ∈ UHGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑁𝑒) → (𝐺 NeighbVtx 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wnel 3049  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  c0 4256  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Vtxcvtx 27366  Edgcedg 27417  UHGraphcuhgr 27426   NeighbVtx cnbgr 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-edg 27418  df-uhgr 27428  df-nbgr 27700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator