MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metds0 Structured version   Visualization version   GIF version

Theorem metds0 24013
Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metds0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metds0
StepHypRef Expression
1 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 24011 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
323adant3 1131 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐹:𝑋⟶(0[,]+∞))
4 ssel2 3916 . . . . . . . . 9 ((𝑆𝑋𝐴𝑆) → 𝐴𝑋)
543adant1 1129 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐴𝑋)
63, 5ffvelrnd 6962 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ∈ (0[,]+∞))
7 eliccxr 13167 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
86, 7syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ∈ ℝ*)
98xrleidd 12886 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ≤ (𝐹𝐴))
10 simp1 1135 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐷 ∈ (∞Met‘𝑋))
11 simp2 1136 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝑆𝑋)
121metdsge 24012 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
1310, 11, 5, 8, 12syl31anc 1372 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
149, 13mpbid 231 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
15 simpl3 1192 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴𝑆)
1610adantr 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
175adantr 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴𝑋)
188adantr 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → (𝐹𝐴) ∈ ℝ*)
19 simpr 485 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 0 < (𝐹𝐴))
20 xblcntr 23564 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ ((𝐹𝐴) ∈ ℝ* ∧ 0 < (𝐹𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
2116, 17, 18, 19, 20syl112anc 1373 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
22 inelcm 4398 . . . . . . 7 ((𝐴𝑆𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴))) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅)
2315, 21, 22syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅)
2423ex 413 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 < (𝐹𝐴) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅))
2524necon2bd 2959 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ((𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅ → ¬ 0 < (𝐹𝐴)))
2614, 25mpd 15 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ¬ 0 < (𝐹𝐴))
27 elxrge0 13189 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
2827simprbi 497 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
296, 28syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 0 ≤ (𝐹𝐴))
30 0xr 11022 . . . . . 6 0 ∈ ℝ*
31 xrleloe 12878 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
3230, 8, 31sylancr 587 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
3329, 32mpbid 231 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
3433ord 861 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
3526, 34mpd 15 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 0 = (𝐹𝐴))
3635eqcomd 2744 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  infcinf 9200  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,]cicc 13082  ∞Metcxmet 20582  ballcbl 20584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-psmet 20589  df-xmet 20590  df-bl 20592
This theorem is referenced by:  metdsle  24015  metnrmlem1  24022
  Copyright terms: Public domain W3C validator