MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metds0 Structured version   Visualization version   GIF version

Theorem metds0 24788
Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metds0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metds0
StepHypRef Expression
1 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 24786 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
323adant3 1132 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐹:𝑋⟶(0[,]+∞))
4 ssel2 3953 . . . . . . . . 9 ((𝑆𝑋𝐴𝑆) → 𝐴𝑋)
543adant1 1130 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐴𝑋)
63, 5ffvelcdmd 7074 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ∈ (0[,]+∞))
7 eliccxr 13450 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
86, 7syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ∈ ℝ*)
98xrleidd 13166 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ≤ (𝐹𝐴))
10 simp1 1136 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐷 ∈ (∞Met‘𝑋))
11 simp2 1137 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝑆𝑋)
121metdsge 24787 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
1310, 11, 5, 8, 12syl31anc 1375 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
149, 13mpbid 232 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
15 simpl3 1194 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴𝑆)
1610adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
175adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴𝑋)
188adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → (𝐹𝐴) ∈ ℝ*)
19 simpr 484 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 0 < (𝐹𝐴))
20 xblcntr 24348 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ ((𝐹𝐴) ∈ ℝ* ∧ 0 < (𝐹𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
2116, 17, 18, 19, 20syl112anc 1376 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
22 inelcm 4440 . . . . . . 7 ((𝐴𝑆𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴))) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅)
2315, 21, 22syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅)
2423ex 412 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 < (𝐹𝐴) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅))
2524necon2bd 2948 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ((𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅ → ¬ 0 < (𝐹𝐴)))
2614, 25mpd 15 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ¬ 0 < (𝐹𝐴))
27 elxrge0 13472 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
2827simprbi 496 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
296, 28syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 0 ≤ (𝐹𝐴))
30 0xr 11280 . . . . . 6 0 ∈ ℝ*
31 xrleloe 13158 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
3230, 8, 31sylancr 587 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
3329, 32mpbid 232 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
3433ord 864 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
3526, 34mpd 15 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 0 = (𝐹𝐴))
3635eqcomd 2741 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cmpt 5201  ran crn 5655  wf 6526  cfv 6530  (class class class)co 7403  infcinf 9451  0cc0 11127  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  [,]cicc 13363  ∞Metcxmet 21298  ballcbl 21300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-2 12301  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-icc 13367  df-psmet 21305  df-xmet 21306  df-bl 21308
This theorem is referenced by:  metdsle  24790  metnrmlem1  24797
  Copyright terms: Public domain W3C validator