MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metds0 Structured version   Visualization version   GIF version

Theorem metds0 24764
Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metds0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metds0
StepHypRef Expression
1 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 24762 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
323adant3 1132 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐹:𝑋⟶(0[,]+∞))
4 ssel2 3929 . . . . . . . . 9 ((𝑆𝑋𝐴𝑆) → 𝐴𝑋)
543adant1 1130 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐴𝑋)
63, 5ffvelcdmd 7018 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ∈ (0[,]+∞))
7 eliccxr 13332 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
86, 7syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ∈ ℝ*)
98xrleidd 13048 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) ≤ (𝐹𝐴))
10 simp1 1136 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝐷 ∈ (∞Met‘𝑋))
11 simp2 1137 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 𝑆𝑋)
121metdsge 24763 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
1310, 11, 5, 8, 12syl31anc 1375 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
149, 13mpbid 232 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
15 simpl3 1194 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴𝑆)
1610adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
175adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴𝑋)
188adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → (𝐹𝐴) ∈ ℝ*)
19 simpr 484 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 0 < (𝐹𝐴))
20 xblcntr 24324 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ ((𝐹𝐴) ∈ ℝ* ∧ 0 < (𝐹𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
2116, 17, 18, 19, 20syl112anc 1376 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
22 inelcm 4415 . . . . . . 7 ((𝐴𝑆𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴))) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅)
2315, 21, 22syl2anc 584 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) ∧ 0 < (𝐹𝐴)) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅)
2423ex 412 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 < (𝐹𝐴) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) ≠ ∅))
2524necon2bd 2944 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ((𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅ → ¬ 0 < (𝐹𝐴)))
2614, 25mpd 15 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → ¬ 0 < (𝐹𝐴))
27 elxrge0 13354 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
2827simprbi 496 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
296, 28syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 0 ≤ (𝐹𝐴))
30 0xr 11156 . . . . . 6 0 ∈ ℝ*
31 xrleloe 13040 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
3230, 8, 31sylancr 587 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
3329, 32mpbid 232 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
3433ord 864 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
3526, 34mpd 15 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → 0 = (𝐹𝐴))
3635eqcomd 2737 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3901  wss 3902  c0 4283   class class class wbr 5091  cmpt 5172  ran crn 5617  wf 6477  cfv 6481  (class class class)co 7346  infcinf 9325  0cc0 11003  +∞cpnf 11140  *cxr 11142   < clt 11143  cle 11144  [,]cicc 13245  ∞Metcxmet 21274  ballcbl 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-2 12185  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-icc 13249  df-psmet 21281  df-xmet 21282  df-bl 21284
This theorem is referenced by:  metdsle  24766  metnrmlem1  24773
  Copyright terms: Public domain W3C validator