MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metds0 Structured version   Visualization version   GIF version

Theorem metds0 24784
Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metds0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) = 0)
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐷,𝑦   π‘₯,𝑆,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)

Proof of Theorem metds0
StepHypRef Expression
1 metdscn.f . . . . . . . . . 10 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
21metdsf 24782 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))
323adant3 1129 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))
4 ssel2 3975 . . . . . . . . 9 ((𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐴 ∈ 𝑋)
543adant1 1127 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐴 ∈ 𝑋)
63, 5ffvelcdmd 7098 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) ∈ (0[,]+∞))
7 eliccxr 13450 . . . . . . 7 ((πΉβ€˜π΄) ∈ (0[,]+∞) β†’ (πΉβ€˜π΄) ∈ ℝ*)
86, 7syl 17 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) ∈ ℝ*)
98xrleidd 13169 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) ≀ (πΉβ€˜π΄))
10 simp1 1133 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
11 simp2 1134 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝑆 βŠ† 𝑋)
121metdsge 24783 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) ∈ ℝ*) β†’ ((πΉβ€˜π΄) ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…))
1310, 11, 5, 8, 12syl31anc 1370 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ ((πΉβ€˜π΄) ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…))
149, 13mpbid 231 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…)
15 simpl3 1190 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ 𝑆)
1610adantr 479 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
175adantr 479 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ 𝑋)
188adantr 479 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ (πΉβ€˜π΄) ∈ ℝ*)
19 simpr 483 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 0 < (πΉβ€˜π΄))
20 xblcntr 24335 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ ((πΉβ€˜π΄) ∈ ℝ* ∧ 0 < (πΉβ€˜π΄))) β†’ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))
2116, 17, 18, 19, 20syl112anc 1371 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))
22 inelcm 4466 . . . . . . 7 ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β‰  βˆ…)
2315, 21, 22syl2anc 582 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β‰  βˆ…)
2423ex 411 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (0 < (πΉβ€˜π΄) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β‰  βˆ…))
2524necon2bd 2952 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ ((𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ… β†’ Β¬ 0 < (πΉβ€˜π΄)))
2614, 25mpd 15 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ Β¬ 0 < (πΉβ€˜π΄))
27 elxrge0 13472 . . . . . . 7 ((πΉβ€˜π΄) ∈ (0[,]+∞) ↔ ((πΉβ€˜π΄) ∈ ℝ* ∧ 0 ≀ (πΉβ€˜π΄)))
2827simprbi 495 . . . . . 6 ((πΉβ€˜π΄) ∈ (0[,]+∞) β†’ 0 ≀ (πΉβ€˜π΄))
296, 28syl 17 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 0 ≀ (πΉβ€˜π΄))
30 0xr 11297 . . . . . 6 0 ∈ ℝ*
31 xrleloe 13161 . . . . . 6 ((0 ∈ ℝ* ∧ (πΉβ€˜π΄) ∈ ℝ*) β†’ (0 ≀ (πΉβ€˜π΄) ↔ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄))))
3230, 8, 31sylancr 585 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (0 ≀ (πΉβ€˜π΄) ↔ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄))))
3329, 32mpbid 231 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄)))
3433ord 862 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (Β¬ 0 < (πΉβ€˜π΄) β†’ 0 = (πΉβ€˜π΄)))
3526, 34mpd 15 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 0 = (πΉβ€˜π΄))
3635eqcomd 2733 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) = 0)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2936   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4324   class class class wbr 5150   ↦ cmpt 5233  ran crn 5681  βŸΆwf 6547  β€˜cfv 6551  (class class class)co 7424  infcinf 9470  0cc0 11144  +∞cpnf 11281  β„*cxr 11283   < clt 11284   ≀ cle 11285  [,]cicc 13365  βˆžMetcxmet 21269  ballcbl 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 7997  df-2nd 7998  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-2 12311  df-rp 13013  df-xneg 13130  df-xadd 13131  df-xmul 13132  df-icc 13369  df-psmet 21276  df-xmet 21277  df-bl 21279
This theorem is referenced by:  metdsle  24786  metnrmlem1  24793
  Copyright terms: Public domain W3C validator