MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metds0 Structured version   Visualization version   GIF version

Theorem metds0 24686
Description: If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metds0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) = 0)
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐷,𝑦   π‘₯,𝑆,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)

Proof of Theorem metds0
StepHypRef Expression
1 metdscn.f . . . . . . . . . 10 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
21metdsf 24684 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))
323adant3 1131 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))
4 ssel2 3977 . . . . . . . . 9 ((𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐴 ∈ 𝑋)
543adant1 1129 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐴 ∈ 𝑋)
63, 5ffvelcdmd 7087 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) ∈ (0[,]+∞))
7 eliccxr 13419 . . . . . . 7 ((πΉβ€˜π΄) ∈ (0[,]+∞) β†’ (πΉβ€˜π΄) ∈ ℝ*)
86, 7syl 17 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) ∈ ℝ*)
98xrleidd 13138 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) ≀ (πΉβ€˜π΄))
10 simp1 1135 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
11 simp2 1136 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 𝑆 βŠ† 𝑋)
121metdsge 24685 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) ∈ ℝ*) β†’ ((πΉβ€˜π΄) ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…))
1310, 11, 5, 8, 12syl31anc 1372 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ ((πΉβ€˜π΄) ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…))
149, 13mpbid 231 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…)
15 simpl3 1192 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ 𝑆)
1610adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
175adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ 𝑋)
188adantr 480 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ (πΉβ€˜π΄) ∈ ℝ*)
19 simpr 484 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 0 < (πΉβ€˜π΄))
20 xblcntr 24237 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ ((πΉβ€˜π΄) ∈ ℝ* ∧ 0 < (πΉβ€˜π΄))) β†’ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))
2116, 17, 18, 19, 20syl112anc 1373 . . . . . . 7 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))
22 inelcm 4464 . . . . . . 7 ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β‰  βˆ…)
2315, 21, 22syl2anc 583 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) ∧ 0 < (πΉβ€˜π΄)) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β‰  βˆ…)
2423ex 412 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (0 < (πΉβ€˜π΄) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) β‰  βˆ…))
2524necon2bd 2955 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ ((𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ… β†’ Β¬ 0 < (πΉβ€˜π΄)))
2614, 25mpd 15 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ Β¬ 0 < (πΉβ€˜π΄))
27 elxrge0 13441 . . . . . . 7 ((πΉβ€˜π΄) ∈ (0[,]+∞) ↔ ((πΉβ€˜π΄) ∈ ℝ* ∧ 0 ≀ (πΉβ€˜π΄)))
2827simprbi 496 . . . . . 6 ((πΉβ€˜π΄) ∈ (0[,]+∞) β†’ 0 ≀ (πΉβ€˜π΄))
296, 28syl 17 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 0 ≀ (πΉβ€˜π΄))
30 0xr 11268 . . . . . 6 0 ∈ ℝ*
31 xrleloe 13130 . . . . . 6 ((0 ∈ ℝ* ∧ (πΉβ€˜π΄) ∈ ℝ*) β†’ (0 ≀ (πΉβ€˜π΄) ↔ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄))))
3230, 8, 31sylancr 586 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (0 ≀ (πΉβ€˜π΄) ↔ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄))))
3329, 32mpbid 231 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄)))
3433ord 861 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (Β¬ 0 < (πΉβ€˜π΄) β†’ 0 = (πΉβ€˜π΄)))
3526, 34mpd 15 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ 0 = (πΉβ€˜π΄))
3635eqcomd 2737 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) = 0)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322   class class class wbr 5148   ↦ cmpt 5231  ran crn 5677  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  infcinf 9442  0cc0 11116  +∞cpnf 11252  β„*cxr 11254   < clt 11255   ≀ cle 11256  [,]cicc 13334  βˆžMetcxmet 21218  ballcbl 21220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-2 12282  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-icc 13338  df-psmet 21225  df-xmet 21226  df-bl 21228
This theorem is referenced by:  metdsle  24688  metnrmlem1  24695
  Copyright terms: Public domain W3C validator