Step | Hyp | Ref
| Expression |
1 | | eulerpartlems.r |
. . . . . 6
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
2 | | eulerpartlems.s |
. . . . . 6
⊢ 𝑆 = (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
3 | 1, 2 | eulerpartlemsf 32038 |
. . . . 5
⊢ 𝑆:((ℕ0
↑m ℕ) ∩ 𝑅)⟶ℕ0 |
4 | 3 | ffvelrni 6903 |
. . . 4
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) ∈
ℕ0) |
5 | | nndiffz1 30827 |
. . . . 5
⊢ ((𝑆‘𝐴) ∈ ℕ0 → (ℕ
∖ (1...(𝑆‘𝐴))) =
(ℤ≥‘((𝑆‘𝐴) + 1))) |
6 | 5 | eleq2d 2823 |
. . . 4
⊢ ((𝑆‘𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖
(1...(𝑆‘𝐴))) ↔ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1)))) |
7 | 4, 6 | syl 17 |
. . 3
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴))) ↔ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1)))) |
8 | 7 | pm5.32i 578 |
. 2
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) ↔ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1)))) |
9 | | simpr 488 |
. . . . . 6
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) |
10 | | eldif 3876 |
. . . . . 6
⊢ (𝑡 ∈ (ℕ ∖
(1...(𝑆‘𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆‘𝐴)))) |
11 | 9, 10 | sylib 221 |
. . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆‘𝐴)))) |
12 | 11 | simpld 498 |
. . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑡 ∈ ℕ) |
13 | 1, 2 | eulerpartlemelr 32036 |
. . . . . 6
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧
(◡𝐴 “ ℕ) ∈
Fin)) |
14 | 13 | simpld 498 |
. . . . 5
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
15 | 14 | ffvelrnda 6904 |
. . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴‘𝑡) ∈
ℕ0) |
16 | 12, 15 | syldan 594 |
. . 3
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑡) ∈
ℕ0) |
17 | | simpl 486 |
. . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅)) |
18 | 4 | adantr 484 |
. . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝑆‘𝐴) ∈
ℕ0) |
19 | 11 | simprd 499 |
. . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ¬ 𝑡 ∈ (1...(𝑆‘𝐴))) |
20 | | simpl 486 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → 𝑡 ∈
ℕ) |
21 | | nnuz 12477 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
22 | 20, 21 | eleqtrdi 2848 |
. . . . . . . . 9
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → 𝑡 ∈
(ℤ≥‘1)) |
23 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑆‘𝐴) ∈
ℕ0) |
24 | 23 | nn0zd 12280 |
. . . . . . . . 9
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑆‘𝐴) ∈ ℤ) |
25 | | elfz5 13104 |
. . . . . . . . 9
⊢ ((𝑡 ∈
(ℤ≥‘1) ∧ (𝑆‘𝐴) ∈ ℤ) → (𝑡 ∈ (1...(𝑆‘𝐴)) ↔ 𝑡 ≤ (𝑆‘𝐴))) |
26 | 22, 24, 25 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑡 ∈ (1...(𝑆‘𝐴)) ↔ 𝑡 ≤ (𝑆‘𝐴))) |
27 | 26 | notbid 321 |
. . . . . . 7
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (¬
𝑡 ∈ (1...(𝑆‘𝐴)) ↔ ¬ 𝑡 ≤ (𝑆‘𝐴))) |
28 | 23 | nn0red 12151 |
. . . . . . . 8
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑆‘𝐴) ∈ ℝ) |
29 | 20 | nnred 11845 |
. . . . . . . 8
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → 𝑡 ∈
ℝ) |
30 | 28, 29 | ltnled 10979 |
. . . . . . 7
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → ((𝑆‘𝐴) < 𝑡 ↔ ¬ 𝑡 ≤ (𝑆‘𝐴))) |
31 | 27, 30 | bitr4d 285 |
. . . . . 6
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (¬
𝑡 ∈ (1...(𝑆‘𝐴)) ↔ (𝑆‘𝐴) < 𝑡)) |
32 | 31 | biimpa 480 |
. . . . 5
⊢ (((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) ∧ ¬
𝑡 ∈ (1...(𝑆‘𝐴))) → (𝑆‘𝐴) < 𝑡) |
33 | 12, 18, 19, 32 | syl21anc 838 |
. . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝑆‘𝐴) < 𝑡) |
34 | 1, 2 | eulerpartlemsv1 32035 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
35 | | fveq2 6717 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → (𝐴‘𝑘) = (𝐴‘𝑡)) |
36 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → 𝑘 = 𝑡) |
37 | 35, 36 | oveq12d 7231 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) · 𝑘) = ((𝐴‘𝑡) · 𝑡)) |
38 | 37 | cbvsumv 15260 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
ℕ ((𝐴‘𝑘) · 𝑘) = Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) |
39 | 34, 38 | eqtr2di 2795 |
. . . . . . . . 9
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) = (𝑆‘𝐴)) |
40 | | breq2 5057 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑙 → ((𝑆‘𝐴) < 𝑡 ↔ (𝑆‘𝐴) < 𝑙)) |
41 | | fveq2 6717 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑙 → (𝐴‘𝑡) = (𝐴‘𝑙)) |
42 | 41 | breq2d 5065 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑙 → (0 < (𝐴‘𝑡) ↔ 0 < (𝐴‘𝑙))) |
43 | 40, 42 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑙 → (((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) ↔ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙)))) |
44 | 43 | cbvrexvw 3359 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) ↔ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) |
45 | 4 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈
ℕ0) |
46 | 45 | nn0red 12151 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈ ℝ) |
47 | 4 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈
ℕ0) |
48 | 47 | nn0red 12151 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈ ℝ) |
49 | | simpr 488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ) |
50 | 49 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ∈ ℕ) |
51 | 50 | nnred 11845 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ∈ ℝ) |
52 | | 1zzd 12208 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 1 ∈
ℤ) |
53 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝐴:ℕ⟶ℕ0) |
54 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ) |
55 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
(𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚))) |
56 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) ∧
𝑚 = 𝑡) → 𝑚 = 𝑡) |
57 | 56 | fveq2d 6721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) ∧
𝑚 = 𝑡) → (𝐴‘𝑚) = (𝐴‘𝑡)) |
58 | 57, 56 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) ∧
𝑚 = 𝑡) → ((𝐴‘𝑚) · 𝑚) = ((𝐴‘𝑡) · 𝑡)) |
59 | | simpr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
𝑡 ∈
ℕ) |
60 | | ffvelrn 6902 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
(𝐴‘𝑡) ∈
ℕ0) |
61 | 59 | nnnn0d 12150 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
𝑡 ∈
ℕ0) |
62 | 60, 61 | nn0mulcld 12155 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
((𝐴‘𝑡) · 𝑡) ∈
ℕ0) |
63 | 55, 58, 59, 62 | fvmptd 6825 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
((𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚))‘𝑡) = ((𝐴‘𝑡) · 𝑡)) |
64 | 53, 54, 63 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚))‘𝑡) = ((𝐴‘𝑡) · 𝑡)) |
65 | 14 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝐴:ℕ⟶ℕ0) |
66 | 65 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (𝐴‘𝑡) ∈
ℕ0) |
67 | 54 | nnnn0d 12150 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0) |
68 | 66, 67 | nn0mulcld 12155 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴‘𝑡) · 𝑡) ∈
ℕ0) |
69 | 68 | nn0red 12151 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴‘𝑡) · 𝑡) ∈ ℝ) |
70 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑡 → (𝐴‘𝑚) = (𝐴‘𝑡)) |
71 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑡 → 𝑚 = 𝑡) |
72 | 70, 71 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑡 → ((𝐴‘𝑚) · 𝑚) = ((𝐴‘𝑡) · 𝑡)) |
73 | 72 | cbvmptv 5158 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐴‘𝑡) · 𝑡)) |
74 | 68, 73 | fmptd 6931 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℕ0) |
75 | | nn0sscn 12095 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ⊆ ℂ |
76 | | fss 6562 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℕ0 ∧
ℕ0 ⊆ ℂ) → (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ) |
77 | 74, 75, 76 | sylancl 589 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ) |
78 | | nnex 11836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ
∈ V |
79 | | 0nn0 12105 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℕ0 |
80 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℂ
∖ {0}) = (ℂ ∖ {0}) |
81 | 80 | ffs2 30783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℕ
∈ V ∧ 0 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) = (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖
{0}))) |
82 | 78, 79, 81 | mp3an12 1453 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) = (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖
{0}))) |
83 | 77, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) = (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖
{0}))) |
84 | | frnnn0supp 12146 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℕ
∈ V ∧ 𝐴:ℕ⟶ℕ0) →
(𝐴 supp 0) = (◡𝐴 “ ℕ)) |
85 | 78, 65, 84 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) = (◡𝐴 “ ℕ)) |
86 | 13 | simprd 499 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ∈
Fin) |
87 | 86 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (◡𝐴 “ ℕ) ∈
Fin) |
88 | 85, 87 | eqeltrd 2838 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) ∈ Fin) |
89 | 78 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴:ℕ⟶ℕ0 →
ℕ ∈ V) |
90 | 79 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴:ℕ⟶ℕ0 → 0
∈ ℕ0) |
91 | | ffn 6545 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴:ℕ⟶ℕ0 →
𝐴 Fn
ℕ) |
92 | | simp3 1140 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → (𝐴‘𝑡) = 0) |
93 | 92 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → ((𝐴‘𝑡) · 𝑡) = (0 · 𝑡)) |
94 | | simp2 1139 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → 𝑡 ∈ ℕ) |
95 | 94 | nncnd 11846 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → 𝑡 ∈ ℂ) |
96 | 95 | mul02d 11030 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → (0 · 𝑡) = 0) |
97 | 93, 96 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → ((𝐴‘𝑡) · 𝑡) = 0) |
98 | 73, 89, 90, 91, 97 | suppss3 30779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴:ℕ⟶ℕ0 →
((𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) |
99 | 65, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) |
100 | | ssfi 8851 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 supp 0) ∈ Fin ∧
((𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) ∈ Fin) |
101 | 88, 99, 100 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) ∈ Fin) |
102 | 83, 101 | eqeltrrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖ {0})) ∈
Fin) |
103 | 21, 52, 77, 102 | fsumcvg4 31614 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚))) ∈ dom ⇝ ) |
104 | 21, 52, 64, 69, 103 | isumrecl 15329 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ∈ ℝ) |
105 | 104 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ∈ ℝ) |
106 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) < 𝑙) |
107 | 14 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴‘𝑙) ∈
ℕ0) |
108 | 107 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝐴‘𝑙) ∈
ℕ0) |
109 | 108 | nn0red 12151 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝐴‘𝑙) ∈ ℝ) |
110 | 109, 51 | remulcld 10863 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → ((𝐴‘𝑙) · 𝑙) ∈ ℝ) |
111 | 50 | nnnn0d 12150 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ∈ ℕ0) |
112 | 111 | nn0ge0d 12153 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 0 ≤ 𝑙) |
113 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 0 < (𝐴‘𝑙)) |
114 | | elnnnn0b 12134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴‘𝑙) ∈ ℕ ↔ ((𝐴‘𝑙) ∈ ℕ0 ∧ 0 <
(𝐴‘𝑙))) |
115 | | nnge1 11858 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴‘𝑙) ∈ ℕ → 1 ≤ (𝐴‘𝑙)) |
116 | 114, 115 | sylbir 238 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴‘𝑙) ∈ ℕ0 ∧ 0 <
(𝐴‘𝑙)) → 1 ≤ (𝐴‘𝑙)) |
117 | 108, 113,
116 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 1 ≤ (𝐴‘𝑙)) |
118 | 51, 109, 112, 117 | lemulge12d 11770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ≤ ((𝐴‘𝑙) · 𝑙)) |
119 | 107 | nn0cnd 12152 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴‘𝑙) ∈ ℂ) |
120 | 49 | nncnd 11846 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℂ) |
121 | 119, 120 | mulcld 10853 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴‘𝑙) · 𝑙) ∈ ℂ) |
122 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑙 → 𝑡 = 𝑙) |
123 | 41, 122 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑙 → ((𝐴‘𝑡) · 𝑡) = ((𝐴‘𝑙) · 𝑙)) |
124 | 123 | sumsn 15310 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑙 ∈ ℕ ∧ ((𝐴‘𝑙) · 𝑙) ∈ ℂ) → Σ𝑡 ∈ {𝑙} ((𝐴‘𝑡) · 𝑡) = ((𝐴‘𝑙) · 𝑙)) |
125 | 49, 121, 124 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴‘𝑡) · 𝑡) = ((𝐴‘𝑙) · 𝑙)) |
126 | | snfi 8721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑙} ∈ Fin |
127 | 126 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ∈ Fin) |
128 | 49 | snssd 4722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ⊆ ℕ) |
129 | 68 | nn0ge0d 12153 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 0 ≤ ((𝐴‘𝑡) · 𝑡)) |
130 | 21, 52, 127, 128, 64, 69, 129, 103 | isumless 15409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴‘𝑡) · 𝑡) ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) |
131 | 125, 130 | eqbrtrrd 5077 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴‘𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) |
132 | 131 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → ((𝐴‘𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) |
133 | 51, 110, 105, 118, 132 | letrd 10989 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) |
134 | 48, 51, 105, 106, 133 | ltletrd 10992 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) < Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) |
135 | 134 | r19.29an 3207 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) < Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) |
136 | 46, 135 | gtned 10967 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ≠ (𝑆‘𝐴)) |
137 | 136 | ex 416 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙)) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ≠ (𝑆‘𝐴))) |
138 | 44, 137 | syl5bi 245 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ≠ (𝑆‘𝐴))) |
139 | 138 | necon2bd 2956 |
. . . . . . . . 9
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) = (𝑆‘𝐴) → ¬ ∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)))) |
140 | 39, 139 | mpd 15 |
. . . . . . . 8
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → ¬ ∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) |
141 | | ralnex 3158 |
. . . . . . . 8
⊢
(∀𝑡 ∈
ℕ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) ↔ ¬ ∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) |
142 | 140, 141 | sylibr 237 |
. . . . . . 7
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) |
143 | | imnan 403 |
. . . . . . . 8
⊢ (((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡)) ↔ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) |
144 | 143 | ralbii 3088 |
. . . . . . 7
⊢
(∀𝑡 ∈
ℕ ((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡)) ↔ ∀𝑡 ∈ ℕ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) |
145 | 142, 144 | sylibr 237 |
. . . . . 6
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡))) |
146 | 145 | r19.21bi 3130 |
. . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡))) |
147 | 146 | imp 410 |
. . . 4
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ (𝑆‘𝐴) < 𝑡) → ¬ 0 < (𝐴‘𝑡)) |
148 | 17, 12, 33, 147 | syl21anc 838 |
. . 3
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ¬ 0 < (𝐴‘𝑡)) |
149 | | nn0re 12099 |
. . . . . 6
⊢ ((𝐴‘𝑡) ∈ ℕ0 → (𝐴‘𝑡) ∈ ℝ) |
150 | | 0red 10836 |
. . . . . 6
⊢ ((𝐴‘𝑡) ∈ ℕ0 → 0 ∈
ℝ) |
151 | 149, 150 | lenltd 10978 |
. . . . 5
⊢ ((𝐴‘𝑡) ∈ ℕ0 → ((𝐴‘𝑡) ≤ 0 ↔ ¬ 0 < (𝐴‘𝑡))) |
152 | | nn0le0eq0 12118 |
. . . . 5
⊢ ((𝐴‘𝑡) ∈ ℕ0 → ((𝐴‘𝑡) ≤ 0 ↔ (𝐴‘𝑡) = 0)) |
153 | 151, 152 | bitr3d 284 |
. . . 4
⊢ ((𝐴‘𝑡) ∈ ℕ0 → (¬ 0
< (𝐴‘𝑡) ↔ (𝐴‘𝑡) = 0)) |
154 | 153 | biimpa 480 |
. . 3
⊢ (((𝐴‘𝑡) ∈ ℕ0 ∧ ¬ 0
< (𝐴‘𝑡)) → (𝐴‘𝑡) = 0) |
155 | 16, 148, 154 | syl2anc 587 |
. 2
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑡) = 0) |
156 | 8, 155 | sylbir 238 |
1
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))) → (𝐴‘𝑡) = 0) |