Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlems Structured version   Visualization version   GIF version

Theorem eulerpartlems 34344
Description: Lemma for eulerpart 34366. (Contributed by Thierry Arnoux, 6-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlems ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑡,𝑘,𝐴   𝑡,𝑅   𝑡,𝑆
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlems
Dummy variables 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.r . . . . . 6 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . . . . 6 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsf 34343 . . . . 5 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
43ffvelcdmi 7037 . . . 4 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
5 nndiffz1 32759 . . . . 5 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
65eleq2d 2814 . . . 4 ((𝑆𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
74, 6syl 17 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
87pm5.32i 574 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) ↔ (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
9 simpr 484 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))))
10 eldif 3921 . . . . . 6 (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
119, 10sylib 218 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
1211simpld 494 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℕ)
131, 2eulerpartlemelr 34341 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
1413simpld 494 . . . . 5 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
1514ffvelcdmda 7038 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
1612, 15syldan 591 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) ∈ ℕ0)
17 simpl 482 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅))
184adantr 480 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑆𝐴) ∈ ℕ0)
1911simprd 495 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ¬ 𝑡 ∈ (1...(𝑆𝐴)))
20 simpl 482 . . . . . . . . . 10 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ ℕ)
21 nnuz 12812 . . . . . . . . . 10 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2838 . . . . . . . . 9 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ (ℤ‘1))
23 simpr 484 . . . . . . . . . 10 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℕ0)
2423nn0zd 12531 . . . . . . . . 9 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℤ)
25 elfz5 13453 . . . . . . . . 9 ((𝑡 ∈ (ℤ‘1) ∧ (𝑆𝐴) ∈ ℤ) → (𝑡 ∈ (1...(𝑆𝐴)) ↔ 𝑡 ≤ (𝑆𝐴)))
2622, 24, 25syl2anc 584 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑡 ∈ (1...(𝑆𝐴)) ↔ 𝑡 ≤ (𝑆𝐴)))
2726notbid 318 . . . . . . 7 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (¬ 𝑡 ∈ (1...(𝑆𝐴)) ↔ ¬ 𝑡 ≤ (𝑆𝐴)))
2823nn0red 12480 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℝ)
2920nnred 12177 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ ℝ)
3028, 29ltnled 11297 . . . . . . 7 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → ((𝑆𝐴) < 𝑡 ↔ ¬ 𝑡 ≤ (𝑆𝐴)))
3127, 30bitr4d 282 . . . . . 6 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (¬ 𝑡 ∈ (1...(𝑆𝐴)) ↔ (𝑆𝐴) < 𝑡))
3231biimpa 476 . . . . 5 (((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))) → (𝑆𝐴) < 𝑡)
3312, 18, 19, 32syl21anc 837 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑆𝐴) < 𝑡)
341, 2eulerpartlemsv1 34340 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
35 fveq2 6840 . . . . . . . . . . . 12 (𝑘 = 𝑡 → (𝐴𝑘) = (𝐴𝑡))
36 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑡𝑘 = 𝑡)
3735, 36oveq12d 7387 . . . . . . . . . . 11 (𝑘 = 𝑡 → ((𝐴𝑘) · 𝑘) = ((𝐴𝑡) · 𝑡))
3837cbvsumv 15638 . . . . . . . . . 10 Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡)
3934, 38eqtr2di 2781 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) = (𝑆𝐴))
40 breq2 5106 . . . . . . . . . . . . 13 (𝑡 = 𝑙 → ((𝑆𝐴) < 𝑡 ↔ (𝑆𝐴) < 𝑙))
41 fveq2 6840 . . . . . . . . . . . . . 14 (𝑡 = 𝑙 → (𝐴𝑡) = (𝐴𝑙))
4241breq2d 5114 . . . . . . . . . . . . 13 (𝑡 = 𝑙 → (0 < (𝐴𝑡) ↔ 0 < (𝐴𝑙)))
4340, 42anbi12d 632 . . . . . . . . . . . 12 (𝑡 = 𝑙 → (((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))))
4443cbvrexvw 3214 . . . . . . . . . . 11 (∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙)))
454adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℕ0)
4645nn0red 12480 . . . . . . . . . . . . 13 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℝ)
474ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℕ0)
4847nn0red 12480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
5049adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℕ)
5150nnred 12177 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℝ)
52 1zzd 12540 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 1 ∈ ℤ)
5314ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝐴:ℕ⟶ℕ0)
54 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ)
55 eqidd 2730 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)))
56 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → 𝑚 = 𝑡)
5756fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → (𝐴𝑚) = (𝐴𝑡))
5857, 56oveq12d 7387 . . . . . . . . . . . . . . . . . . 19 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → ((𝐴𝑚) · 𝑚) = ((𝐴𝑡) · 𝑡))
59 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → 𝑡 ∈ ℕ)
60 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . 20 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
6159nnnn0d 12479 . . . . . . . . . . . . . . . . . . . 20 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0)
6260, 61nn0mulcld 12484 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℕ0)
6355, 58, 59, 62fvmptd 6957 . . . . . . . . . . . . . . . . . 18 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))‘𝑡) = ((𝐴𝑡) · 𝑡))
6453, 54, 63syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))‘𝑡) = ((𝐴𝑡) · 𝑡))
6514adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝐴:ℕ⟶ℕ0)
6665ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
6754nnnn0d 12479 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0)
6866, 67nn0mulcld 12484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℕ0)
6968nn0red 12480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℝ)
70 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑡 → (𝐴𝑚) = (𝐴𝑡))
71 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑡𝑚 = 𝑡)
7270, 71oveq12d 7387 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑡 → ((𝐴𝑚) · 𝑚) = ((𝐴𝑡) · 𝑡))
7372cbvmptv 5206 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐴𝑡) · 𝑡))
7468, 73fmptd 7068 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℕ0)
75 nn0sscn 12423 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℂ
76 fss 6686 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ)
7774, 75, 76sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ)
78 nnex 12168 . . . . . . . . . . . . . . . . . . . . 21 ℕ ∈ V
79 0nn0 12433 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
80 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (ℂ ∖ {0}) = (ℂ ∖ {0})
8180ffs2 32701 . . . . . . . . . . . . . . . . . . . . 21 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
8278, 79, 81mp3an12 1453 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
8377, 82syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
84 fcdmnn0supp 12475 . . . . . . . . . . . . . . . . . . . . . 22 ((ℕ ∈ V ∧ 𝐴:ℕ⟶ℕ0) → (𝐴 supp 0) = (𝐴 “ ℕ))
8578, 65, 84sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) = (𝐴 “ ℕ))
8613simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ∈ Fin)
8786adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 “ ℕ) ∈ Fin)
8885, 87eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) ∈ Fin)
8978a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0 → ℕ ∈ V)
9079a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0 → 0 ∈ ℕ0)
91 ffn 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
92 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → (𝐴𝑡) = 0)
9392oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → ((𝐴𝑡) · 𝑡) = (0 · 𝑡))
94 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → 𝑡 ∈ ℕ)
9594nncnd 12178 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → 𝑡 ∈ ℂ)
9695mul02d 11348 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → (0 · 𝑡) = 0)
9793, 96eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → ((𝐴𝑡) · 𝑡) = 0)
9873, 89, 90, 91, 97suppss3 32697 . . . . . . . . . . . . . . . . . . . . 21 (𝐴:ℕ⟶ℕ0 → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0))
9965, 98syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0))
100 ssfi 9114 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 supp 0) ∈ Fin ∧ ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ∈ Fin)
10188, 99, 100syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ∈ Fin)
10283, 101eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})) ∈ Fin)
10321, 52, 77, 102fsumcvg4 33933 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))) ∈ dom ⇝ )
10421, 52, 64, 69, 103isumrecl 15707 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ∈ ℝ)
105104adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ∈ ℝ)
106 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < 𝑙)
10714ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℕ0)
108107adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝐴𝑙) ∈ ℕ0)
109108nn0red 12480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝐴𝑙) ∈ ℝ)
110109, 51remulcld 11180 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → ((𝐴𝑙) · 𝑙) ∈ ℝ)
11150nnnn0d 12479 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℕ0)
112111nn0ge0d 12482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 0 ≤ 𝑙)
113 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 0 < (𝐴𝑙))
114 elnnnn0b 12462 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑙) ∈ ℕ ↔ ((𝐴𝑙) ∈ ℕ0 ∧ 0 < (𝐴𝑙)))
115 nnge1 12190 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑙) ∈ ℕ → 1 ≤ (𝐴𝑙))
116114, 115sylbir 235 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑙) ∈ ℕ0 ∧ 0 < (𝐴𝑙)) → 1 ≤ (𝐴𝑙))
117108, 113, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 1 ≤ (𝐴𝑙))
11851, 109, 112, 117lemulge12d 12097 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ≤ ((𝐴𝑙) · 𝑙))
119107nn0cnd 12481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℂ)
12049nncnd 12178 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℂ)
121119, 120mulcld 11170 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴𝑙) · 𝑙) ∈ ℂ)
122 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑙𝑡 = 𝑙)
12341, 122oveq12d 7387 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑙 → ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
124123sumsn 15688 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ ∧ ((𝐴𝑙) · 𝑙) ∈ ℂ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
12549, 121, 124syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
126 snfi 8991 . . . . . . . . . . . . . . . . . . . 20 {𝑙} ∈ Fin
127126a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ∈ Fin)
12849snssd 4769 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ⊆ ℕ)
12968nn0ge0d 12482 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 0 ≤ ((𝐴𝑡) · 𝑡))
13021, 52, 127, 128, 64, 69, 129, 103isumless 15787 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
131125, 130eqbrtrrd 5126 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
132131adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → ((𝐴𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13351, 110, 105, 118, 132letrd 11307 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13448, 51, 105, 106, 133ltletrd 11310 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
135134r19.29an 3137 . . . . . . . . . . . . 13 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13646, 135gtned 11285 . . . . . . . . . . . 12 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴))
137136ex 412 . . . . . . . . . . 11 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙)) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴)))
13844, 137biimtrid 242 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴)))
139138necon2bd 2941 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) = (𝑆𝐴) → ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡))))
14039, 139mpd 15 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
141 ralnex 3055 . . . . . . . 8 (∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
142140, 141sylibr 234 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
143 imnan 399 . . . . . . . 8 (((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)) ↔ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
144143ralbii 3075 . . . . . . 7 (∀𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)) ↔ ∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
145142, 144sylibr 234 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)))
146145r19.21bi 3227 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)))
147146imp 406 . . . 4 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ (𝑆𝐴) < 𝑡) → ¬ 0 < (𝐴𝑡))
14817, 12, 33, 147syl21anc 837 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ¬ 0 < (𝐴𝑡))
149 nn0re 12427 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → (𝐴𝑡) ∈ ℝ)
150 0red 11153 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → 0 ∈ ℝ)
151149, 150lenltd 11296 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → ((𝐴𝑡) ≤ 0 ↔ ¬ 0 < (𝐴𝑡)))
152 nn0le0eq0 12446 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → ((𝐴𝑡) ≤ 0 ↔ (𝐴𝑡) = 0))
153151, 152bitr3d 281 . . . 4 ((𝐴𝑡) ∈ ℕ0 → (¬ 0 < (𝐴𝑡) ↔ (𝐴𝑡) = 0))
154153biimpa 476 . . 3 (((𝐴𝑡) ∈ ℕ0 ∧ ¬ 0 < (𝐴𝑡)) → (𝐴𝑡) = 0)
15516, 148, 154syl2anc 584 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) = 0)
1568, 155sylbir 235 1 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cin 3910  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634  wf 6495  cfv 6499  (class class class)co 7369   supp csupp 8116  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629
This theorem is referenced by:  eulerpartlemsv3  34345  eulerpartlemgc  34346
  Copyright terms: Public domain W3C validator