| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eulerpartlems.r | . . . . . 6
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 2 |  | eulerpartlems.s | . . . . . 6
⊢ 𝑆 = (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | 
| 3 | 1, 2 | eulerpartlemsf 34362 | . . . . 5
⊢ 𝑆:((ℕ0
↑m ℕ) ∩ 𝑅)⟶ℕ0 | 
| 4 | 3 | ffvelcdmi 7102 | . . . 4
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) ∈
ℕ0) | 
| 5 |  | nndiffz1 32789 | . . . . 5
⊢ ((𝑆‘𝐴) ∈ ℕ0 → (ℕ
∖ (1...(𝑆‘𝐴))) =
(ℤ≥‘((𝑆‘𝐴) + 1))) | 
| 6 | 5 | eleq2d 2826 | . . . 4
⊢ ((𝑆‘𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖
(1...(𝑆‘𝐴))) ↔ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1)))) | 
| 7 | 4, 6 | syl 17 | . . 3
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴))) ↔ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1)))) | 
| 8 | 7 | pm5.32i 574 | . 2
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) ↔ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1)))) | 
| 9 |  | simpr 484 | . . . . . 6
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) | 
| 10 |  | eldif 3960 | . . . . . 6
⊢ (𝑡 ∈ (ℕ ∖
(1...(𝑆‘𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆‘𝐴)))) | 
| 11 | 9, 10 | sylib 218 | . . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆‘𝐴)))) | 
| 12 | 11 | simpld 494 | . . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑡 ∈ ℕ) | 
| 13 | 1, 2 | eulerpartlemelr 34360 | . . . . . 6
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧
(◡𝐴 “ ℕ) ∈
Fin)) | 
| 14 | 13 | simpld 494 | . . . . 5
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) | 
| 15 | 14 | ffvelcdmda 7103 | . . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴‘𝑡) ∈
ℕ0) | 
| 16 | 12, 15 | syldan 591 | . . 3
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑡) ∈
ℕ0) | 
| 17 |  | simpl 482 | . . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅)) | 
| 18 | 4 | adantr 480 | . . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝑆‘𝐴) ∈
ℕ0) | 
| 19 | 11 | simprd 495 | . . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ¬ 𝑡 ∈ (1...(𝑆‘𝐴))) | 
| 20 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → 𝑡 ∈
ℕ) | 
| 21 |  | nnuz 12922 | . . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) | 
| 22 | 20, 21 | eleqtrdi 2850 | . . . . . . . . 9
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → 𝑡 ∈
(ℤ≥‘1)) | 
| 23 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑆‘𝐴) ∈
ℕ0) | 
| 24 | 23 | nn0zd 12641 | . . . . . . . . 9
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑆‘𝐴) ∈ ℤ) | 
| 25 |  | elfz5 13557 | . . . . . . . . 9
⊢ ((𝑡 ∈
(ℤ≥‘1) ∧ (𝑆‘𝐴) ∈ ℤ) → (𝑡 ∈ (1...(𝑆‘𝐴)) ↔ 𝑡 ≤ (𝑆‘𝐴))) | 
| 26 | 22, 24, 25 | syl2anc 584 | . . . . . . . 8
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑡 ∈ (1...(𝑆‘𝐴)) ↔ 𝑡 ≤ (𝑆‘𝐴))) | 
| 27 | 26 | notbid 318 | . . . . . . 7
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (¬
𝑡 ∈ (1...(𝑆‘𝐴)) ↔ ¬ 𝑡 ≤ (𝑆‘𝐴))) | 
| 28 | 23 | nn0red 12590 | . . . . . . . 8
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (𝑆‘𝐴) ∈ ℝ) | 
| 29 | 20 | nnred 12282 | . . . . . . . 8
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → 𝑡 ∈
ℝ) | 
| 30 | 28, 29 | ltnled 11409 | . . . . . . 7
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → ((𝑆‘𝐴) < 𝑡 ↔ ¬ 𝑡 ≤ (𝑆‘𝐴))) | 
| 31 | 27, 30 | bitr4d 282 | . . . . . 6
⊢ ((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) → (¬
𝑡 ∈ (1...(𝑆‘𝐴)) ↔ (𝑆‘𝐴) < 𝑡)) | 
| 32 | 31 | biimpa 476 | . . . . 5
⊢ (((𝑡 ∈ ℕ ∧ (𝑆‘𝐴) ∈ ℕ0) ∧ ¬
𝑡 ∈ (1...(𝑆‘𝐴))) → (𝑆‘𝐴) < 𝑡) | 
| 33 | 12, 18, 19, 32 | syl21anc 837 | . . . 4
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝑆‘𝐴) < 𝑡) | 
| 34 | 1, 2 | eulerpartlemsv1 34359 | . . . . . . . . . 10
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) | 
| 35 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → (𝐴‘𝑘) = (𝐴‘𝑡)) | 
| 36 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → 𝑘 = 𝑡) | 
| 37 | 35, 36 | oveq12d 7450 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) · 𝑘) = ((𝐴‘𝑡) · 𝑡)) | 
| 38 | 37 | cbvsumv 15733 | . . . . . . . . . 10
⊢
Σ𝑘 ∈
ℕ ((𝐴‘𝑘) · 𝑘) = Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) | 
| 39 | 34, 38 | eqtr2di 2793 | . . . . . . . . 9
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) = (𝑆‘𝐴)) | 
| 40 |  | breq2 5146 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑙 → ((𝑆‘𝐴) < 𝑡 ↔ (𝑆‘𝐴) < 𝑙)) | 
| 41 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑙 → (𝐴‘𝑡) = (𝐴‘𝑙)) | 
| 42 | 41 | breq2d 5154 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑙 → (0 < (𝐴‘𝑡) ↔ 0 < (𝐴‘𝑙))) | 
| 43 | 40, 42 | anbi12d 632 | . . . . . . . . . . . 12
⊢ (𝑡 = 𝑙 → (((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) ↔ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙)))) | 
| 44 | 43 | cbvrexvw 3237 | . . . . . . . . . . 11
⊢
(∃𝑡 ∈
ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) ↔ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) | 
| 45 | 4 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈
ℕ0) | 
| 46 | 45 | nn0red 12590 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈ ℝ) | 
| 47 | 4 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈
ℕ0) | 
| 48 | 47 | nn0red 12590 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) ∈ ℝ) | 
| 49 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ∈ ℕ) | 
| 51 | 50 | nnred 12282 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ∈ ℝ) | 
| 52 |  | 1zzd 12650 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 1 ∈
ℤ) | 
| 53 | 14 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝐴:ℕ⟶ℕ0) | 
| 54 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ) | 
| 55 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
(𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚))) | 
| 56 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) ∧
𝑚 = 𝑡) → 𝑚 = 𝑡) | 
| 57 | 56 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) ∧
𝑚 = 𝑡) → (𝐴‘𝑚) = (𝐴‘𝑡)) | 
| 58 | 57, 56 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) ∧
𝑚 = 𝑡) → ((𝐴‘𝑚) · 𝑚) = ((𝐴‘𝑡) · 𝑡)) | 
| 59 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
𝑡 ∈
ℕ) | 
| 60 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
(𝐴‘𝑡) ∈
ℕ0) | 
| 61 | 59 | nnnn0d 12589 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
𝑡 ∈
ℕ0) | 
| 62 | 60, 61 | nn0mulcld 12594 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
((𝐴‘𝑡) · 𝑡) ∈
ℕ0) | 
| 63 | 55, 58, 59, 62 | fvmptd 7022 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ) →
((𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚))‘𝑡) = ((𝐴‘𝑡) · 𝑡)) | 
| 64 | 53, 54, 63 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚))‘𝑡) = ((𝐴‘𝑡) · 𝑡)) | 
| 65 | 14 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝐴:ℕ⟶ℕ0) | 
| 66 | 65 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (𝐴‘𝑡) ∈
ℕ0) | 
| 67 | 54 | nnnn0d 12589 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0) | 
| 68 | 66, 67 | nn0mulcld 12594 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴‘𝑡) · 𝑡) ∈
ℕ0) | 
| 69 | 68 | nn0red 12590 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴‘𝑡) · 𝑡) ∈ ℝ) | 
| 70 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑡 → (𝐴‘𝑚) = (𝐴‘𝑡)) | 
| 71 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑡 → 𝑚 = 𝑡) | 
| 72 | 70, 71 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑡 → ((𝐴‘𝑚) · 𝑚) = ((𝐴‘𝑡) · 𝑡)) | 
| 73 | 72 | cbvmptv 5254 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐴‘𝑡) · 𝑡)) | 
| 74 | 68, 73 | fmptd 7133 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℕ0) | 
| 75 |  | nn0sscn 12533 | . . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ⊆ ℂ | 
| 76 |  | fss 6751 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℕ0 ∧
ℕ0 ⊆ ℂ) → (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ) | 
| 77 | 74, 75, 76 | sylancl 586 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ) | 
| 78 |  | nnex 12273 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ
∈ V | 
| 79 |  | 0nn0 12543 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℕ0 | 
| 80 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℂ
∖ {0}) = (ℂ ∖ {0}) | 
| 81 | 80 | ffs2 32740 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℕ
∈ V ∧ 0 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) = (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖
{0}))) | 
| 82 | 78, 79, 81 | mp3an12 1452 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)):ℕ⟶ℂ → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) = (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖
{0}))) | 
| 83 | 77, 82 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) = (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖
{0}))) | 
| 84 |  | fcdmnn0supp 12585 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℕ
∈ V ∧ 𝐴:ℕ⟶ℕ0) →
(𝐴 supp 0) = (◡𝐴 “ ℕ)) | 
| 85 | 78, 65, 84 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) = (◡𝐴 “ ℕ)) | 
| 86 | 13 | simprd 495 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ∈
Fin) | 
| 87 | 86 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (◡𝐴 “ ℕ) ∈
Fin) | 
| 88 | 85, 87 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) ∈ Fin) | 
| 89 | 78 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴:ℕ⟶ℕ0 →
ℕ ∈ V) | 
| 90 | 79 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴:ℕ⟶ℕ0 → 0
∈ ℕ0) | 
| 91 |  | ffn 6735 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴:ℕ⟶ℕ0 →
𝐴 Fn
ℕ) | 
| 92 |  | simp3 1138 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → (𝐴‘𝑡) = 0) | 
| 93 | 92 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → ((𝐴‘𝑡) · 𝑡) = (0 · 𝑡)) | 
| 94 |  | simp2 1137 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → 𝑡 ∈ ℕ) | 
| 95 | 94 | nncnd 12283 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → 𝑡 ∈ ℂ) | 
| 96 | 95 | mul02d 11460 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → (0 · 𝑡) = 0) | 
| 97 | 93, 96 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴:ℕ⟶ℕ0 ∧
𝑡 ∈ ℕ ∧
(𝐴‘𝑡) = 0) → ((𝐴‘𝑡) · 𝑡) = 0) | 
| 98 | 73, 89, 90, 91, 97 | suppss3 32736 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴:ℕ⟶ℕ0 →
((𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) | 
| 99 | 65, 98 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) | 
| 100 |  | ssfi 9214 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 supp 0) ∈ Fin ∧
((𝑚 ∈ ℕ ↦
((𝐴‘𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) ∈ Fin) | 
| 101 | 88, 99, 100 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) supp 0) ∈ Fin) | 
| 102 | 83, 101 | eqeltrrd 2841 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (◡(𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚)) “ (ℂ ∖ {0})) ∈
Fin) | 
| 103 | 21, 52, 77, 102 | fsumcvg4 33950 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴‘𝑚) · 𝑚))) ∈ dom ⇝ ) | 
| 104 | 21, 52, 64, 69, 103 | isumrecl 15802 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ∈ ℝ) | 
| 105 | 104 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ∈ ℝ) | 
| 106 |  | simprl 770 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) < 𝑙) | 
| 107 | 14 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴‘𝑙) ∈
ℕ0) | 
| 108 | 107 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝐴‘𝑙) ∈
ℕ0) | 
| 109 | 108 | nn0red 12590 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝐴‘𝑙) ∈ ℝ) | 
| 110 | 109, 51 | remulcld 11292 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → ((𝐴‘𝑙) · 𝑙) ∈ ℝ) | 
| 111 | 50 | nnnn0d 12589 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ∈ ℕ0) | 
| 112 | 111 | nn0ge0d 12592 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 0 ≤ 𝑙) | 
| 113 |  | simprr 772 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 0 < (𝐴‘𝑙)) | 
| 114 |  | elnnnn0b 12572 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴‘𝑙) ∈ ℕ ↔ ((𝐴‘𝑙) ∈ ℕ0 ∧ 0 <
(𝐴‘𝑙))) | 
| 115 |  | nnge1 12295 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴‘𝑙) ∈ ℕ → 1 ≤ (𝐴‘𝑙)) | 
| 116 | 114, 115 | sylbir 235 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴‘𝑙) ∈ ℕ0 ∧ 0 <
(𝐴‘𝑙)) → 1 ≤ (𝐴‘𝑙)) | 
| 117 | 108, 113,
116 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 1 ≤ (𝐴‘𝑙)) | 
| 118 | 51, 109, 112, 117 | lemulge12d 12207 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ≤ ((𝐴‘𝑙) · 𝑙)) | 
| 119 | 107 | nn0cnd 12591 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴‘𝑙) ∈ ℂ) | 
| 120 | 49 | nncnd 12283 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℂ) | 
| 121 | 119, 120 | mulcld 11282 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴‘𝑙) · 𝑙) ∈ ℂ) | 
| 122 |  | id 22 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑙 → 𝑡 = 𝑙) | 
| 123 | 41, 122 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑙 → ((𝐴‘𝑡) · 𝑡) = ((𝐴‘𝑙) · 𝑙)) | 
| 124 | 123 | sumsn 15783 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑙 ∈ ℕ ∧ ((𝐴‘𝑙) · 𝑙) ∈ ℂ) → Σ𝑡 ∈ {𝑙} ((𝐴‘𝑡) · 𝑡) = ((𝐴‘𝑙) · 𝑙)) | 
| 125 | 49, 121, 124 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴‘𝑡) · 𝑡) = ((𝐴‘𝑙) · 𝑙)) | 
| 126 |  | snfi 9084 | . . . . . . . . . . . . . . . . . . . 20
⊢ {𝑙} ∈ Fin | 
| 127 | 126 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ∈ Fin) | 
| 128 | 49 | snssd 4808 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ⊆ ℕ) | 
| 129 | 68 | nn0ge0d 12592 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 0 ≤ ((𝐴‘𝑡) · 𝑡)) | 
| 130 | 21, 52, 127, 128, 64, 69, 129, 103 | isumless 15882 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴‘𝑡) · 𝑡) ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) | 
| 131 | 125, 130 | eqbrtrrd 5166 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴‘𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) | 
| 132 | 131 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → ((𝐴‘𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) | 
| 133 | 51, 110, 105, 118, 132 | letrd 11419 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → 𝑙 ≤ Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) | 
| 134 | 48, 51, 105, 106, 133 | ltletrd 11422 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) < Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) | 
| 135 | 134 | r19.29an 3157 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → (𝑆‘𝐴) < Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡)) | 
| 136 | 46, 135 | gtned 11397 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙))) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ≠ (𝑆‘𝐴)) | 
| 137 | 136 | ex 412 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (∃𝑙 ∈ ℕ ((𝑆‘𝐴) < 𝑙 ∧ 0 < (𝐴‘𝑙)) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ≠ (𝑆‘𝐴))) | 
| 138 | 44, 137 | biimtrid 242 | . . . . . . . . . 10
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) → Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) ≠ (𝑆‘𝐴))) | 
| 139 | 138 | necon2bd 2955 | . . . . . . . . 9
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (Σ𝑡 ∈ ℕ ((𝐴‘𝑡) · 𝑡) = (𝑆‘𝐴) → ¬ ∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)))) | 
| 140 | 39, 139 | mpd 15 | . . . . . . . 8
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → ¬ ∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) | 
| 141 |  | ralnex 3071 | . . . . . . . 8
⊢
(∀𝑡 ∈
ℕ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡)) ↔ ¬ ∃𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) | 
| 142 | 140, 141 | sylibr 234 | . . . . . . 7
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) | 
| 143 |  | imnan 399 | . . . . . . . 8
⊢ (((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡)) ↔ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) | 
| 144 | 143 | ralbii 3092 | . . . . . . 7
⊢
(∀𝑡 ∈
ℕ ((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡)) ↔ ∀𝑡 ∈ ℕ ¬ ((𝑆‘𝐴) < 𝑡 ∧ 0 < (𝐴‘𝑡))) | 
| 145 | 142, 144 | sylibr 234 | . . . . . 6
⊢ (𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡))) | 
| 146 | 145 | r19.21bi 3250 | . . . . 5
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝑆‘𝐴) < 𝑡 → ¬ 0 < (𝐴‘𝑡))) | 
| 147 | 146 | imp 406 | . . . 4
⊢ (((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ (𝑆‘𝐴) < 𝑡) → ¬ 0 < (𝐴‘𝑡)) | 
| 148 | 17, 12, 33, 147 | syl21anc 837 | . . 3
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ¬ 0 < (𝐴‘𝑡)) | 
| 149 |  | nn0re 12537 | . . . . . 6
⊢ ((𝐴‘𝑡) ∈ ℕ0 → (𝐴‘𝑡) ∈ ℝ) | 
| 150 |  | 0red 11265 | . . . . . 6
⊢ ((𝐴‘𝑡) ∈ ℕ0 → 0 ∈
ℝ) | 
| 151 | 149, 150 | lenltd 11408 | . . . . 5
⊢ ((𝐴‘𝑡) ∈ ℕ0 → ((𝐴‘𝑡) ≤ 0 ↔ ¬ 0 < (𝐴‘𝑡))) | 
| 152 |  | nn0le0eq0 12556 | . . . . 5
⊢ ((𝐴‘𝑡) ∈ ℕ0 → ((𝐴‘𝑡) ≤ 0 ↔ (𝐴‘𝑡) = 0)) | 
| 153 | 151, 152 | bitr3d 281 | . . . 4
⊢ ((𝐴‘𝑡) ∈ ℕ0 → (¬ 0
< (𝐴‘𝑡) ↔ (𝐴‘𝑡) = 0)) | 
| 154 | 153 | biimpa 476 | . . 3
⊢ (((𝐴‘𝑡) ∈ ℕ0 ∧ ¬ 0
< (𝐴‘𝑡)) → (𝐴‘𝑡) = 0) | 
| 155 | 16, 148, 154 | syl2anc 584 | . 2
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑡) = 0) | 
| 156 | 8, 155 | sylbir 235 | 1
⊢ ((𝐴 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))) → (𝐴‘𝑡) = 0) |