Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlems Structured version   Visualization version   GIF version

Theorem eulerpartlems 32327
Description: Lemma for eulerpart 32349. (Contributed by Thierry Arnoux, 6-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlems ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑡,𝑘,𝐴   𝑡,𝑅   𝑡,𝑆
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlems
Dummy variables 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.r . . . . . 6 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . . . . 6 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsf 32326 . . . . 5 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
43ffvelrni 6960 . . . 4 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
5 nndiffz1 31107 . . . . 5 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
65eleq2d 2824 . . . 4 ((𝑆𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
74, 6syl 17 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
87pm5.32i 575 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) ↔ (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
9 simpr 485 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))))
10 eldif 3897 . . . . . 6 (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
119, 10sylib 217 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
1211simpld 495 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℕ)
131, 2eulerpartlemelr 32324 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
1413simpld 495 . . . . 5 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
1514ffvelrnda 6961 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
1612, 15syldan 591 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) ∈ ℕ0)
17 simpl 483 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅))
184adantr 481 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑆𝐴) ∈ ℕ0)
1911simprd 496 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ¬ 𝑡 ∈ (1...(𝑆𝐴)))
20 simpl 483 . . . . . . . . . 10 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ ℕ)
21 nnuz 12621 . . . . . . . . . 10 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2849 . . . . . . . . 9 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ (ℤ‘1))
23 simpr 485 . . . . . . . . . 10 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℕ0)
2423nn0zd 12424 . . . . . . . . 9 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℤ)
25 elfz5 13248 . . . . . . . . 9 ((𝑡 ∈ (ℤ‘1) ∧ (𝑆𝐴) ∈ ℤ) → (𝑡 ∈ (1...(𝑆𝐴)) ↔ 𝑡 ≤ (𝑆𝐴)))
2622, 24, 25syl2anc 584 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑡 ∈ (1...(𝑆𝐴)) ↔ 𝑡 ≤ (𝑆𝐴)))
2726notbid 318 . . . . . . 7 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (¬ 𝑡 ∈ (1...(𝑆𝐴)) ↔ ¬ 𝑡 ≤ (𝑆𝐴)))
2823nn0red 12294 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℝ)
2920nnred 11988 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ ℝ)
3028, 29ltnled 11122 . . . . . . 7 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → ((𝑆𝐴) < 𝑡 ↔ ¬ 𝑡 ≤ (𝑆𝐴)))
3127, 30bitr4d 281 . . . . . 6 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (¬ 𝑡 ∈ (1...(𝑆𝐴)) ↔ (𝑆𝐴) < 𝑡))
3231biimpa 477 . . . . 5 (((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))) → (𝑆𝐴) < 𝑡)
3312, 18, 19, 32syl21anc 835 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑆𝐴) < 𝑡)
341, 2eulerpartlemsv1 32323 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
35 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝑡 → (𝐴𝑘) = (𝐴𝑡))
36 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑡𝑘 = 𝑡)
3735, 36oveq12d 7293 . . . . . . . . . . 11 (𝑘 = 𝑡 → ((𝐴𝑘) · 𝑘) = ((𝐴𝑡) · 𝑡))
3837cbvsumv 15408 . . . . . . . . . 10 Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡)
3934, 38eqtr2di 2795 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) = (𝑆𝐴))
40 breq2 5078 . . . . . . . . . . . . 13 (𝑡 = 𝑙 → ((𝑆𝐴) < 𝑡 ↔ (𝑆𝐴) < 𝑙))
41 fveq2 6774 . . . . . . . . . . . . . 14 (𝑡 = 𝑙 → (𝐴𝑡) = (𝐴𝑙))
4241breq2d 5086 . . . . . . . . . . . . 13 (𝑡 = 𝑙 → (0 < (𝐴𝑡) ↔ 0 < (𝐴𝑙)))
4340, 42anbi12d 631 . . . . . . . . . . . 12 (𝑡 = 𝑙 → (((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))))
4443cbvrexvw 3384 . . . . . . . . . . 11 (∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙)))
454adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℕ0)
4645nn0red 12294 . . . . . . . . . . . . 13 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℝ)
474ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℕ0)
4847nn0red 12294 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℝ)
49 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
5049adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℕ)
5150nnred 11988 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℝ)
52 1zzd 12351 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 1 ∈ ℤ)
5314ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝐴:ℕ⟶ℕ0)
54 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ)
55 eqidd 2739 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)))
56 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → 𝑚 = 𝑡)
5756fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → (𝐴𝑚) = (𝐴𝑡))
5857, 56oveq12d 7293 . . . . . . . . . . . . . . . . . . 19 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → ((𝐴𝑚) · 𝑚) = ((𝐴𝑡) · 𝑡))
59 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → 𝑡 ∈ ℕ)
60 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . 20 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
6159nnnn0d 12293 . . . . . . . . . . . . . . . . . . . 20 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0)
6260, 61nn0mulcld 12298 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℕ0)
6355, 58, 59, 62fvmptd 6882 . . . . . . . . . . . . . . . . . 18 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))‘𝑡) = ((𝐴𝑡) · 𝑡))
6453, 54, 63syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))‘𝑡) = ((𝐴𝑡) · 𝑡))
6514adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝐴:ℕ⟶ℕ0)
6665ffvelrnda 6961 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
6754nnnn0d 12293 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0)
6866, 67nn0mulcld 12298 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℕ0)
6968nn0red 12294 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℝ)
70 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑡 → (𝐴𝑚) = (𝐴𝑡))
71 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑡𝑚 = 𝑡)
7270, 71oveq12d 7293 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑡 → ((𝐴𝑚) · 𝑚) = ((𝐴𝑡) · 𝑡))
7372cbvmptv 5187 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐴𝑡) · 𝑡))
7468, 73fmptd 6988 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℕ0)
75 nn0sscn 12238 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℂ
76 fss 6617 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ)
7774, 75, 76sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ)
78 nnex 11979 . . . . . . . . . . . . . . . . . . . . 21 ℕ ∈ V
79 0nn0 12248 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
80 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (ℂ ∖ {0}) = (ℂ ∖ {0})
8180ffs2 31063 . . . . . . . . . . . . . . . . . . . . 21 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
8278, 79, 81mp3an12 1450 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
8377, 82syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
84 frnnn0supp 12289 . . . . . . . . . . . . . . . . . . . . . 22 ((ℕ ∈ V ∧ 𝐴:ℕ⟶ℕ0) → (𝐴 supp 0) = (𝐴 “ ℕ))
8578, 65, 84sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) = (𝐴 “ ℕ))
8613simprd 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ∈ Fin)
8786adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 “ ℕ) ∈ Fin)
8885, 87eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) ∈ Fin)
8978a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0 → ℕ ∈ V)
9079a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0 → 0 ∈ ℕ0)
91 ffn 6600 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
92 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → (𝐴𝑡) = 0)
9392oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → ((𝐴𝑡) · 𝑡) = (0 · 𝑡))
94 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → 𝑡 ∈ ℕ)
9594nncnd 11989 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → 𝑡 ∈ ℂ)
9695mul02d 11173 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → (0 · 𝑡) = 0)
9793, 96eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → ((𝐴𝑡) · 𝑡) = 0)
9873, 89, 90, 91, 97suppss3 31059 . . . . . . . . . . . . . . . . . . . . 21 (𝐴:ℕ⟶ℕ0 → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0))
9965, 98syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0))
100 ssfi 8956 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 supp 0) ∈ Fin ∧ ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ∈ Fin)
10188, 99, 100syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ∈ Fin)
10283, 101eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})) ∈ Fin)
10321, 52, 77, 102fsumcvg4 31900 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))) ∈ dom ⇝ )
10421, 52, 64, 69, 103isumrecl 15477 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ∈ ℝ)
105104adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ∈ ℝ)
106 simprl 768 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < 𝑙)
10714ffvelrnda 6961 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℕ0)
108107adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝐴𝑙) ∈ ℕ0)
109108nn0red 12294 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝐴𝑙) ∈ ℝ)
110109, 51remulcld 11005 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → ((𝐴𝑙) · 𝑙) ∈ ℝ)
11150nnnn0d 12293 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℕ0)
112111nn0ge0d 12296 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 0 ≤ 𝑙)
113 simprr 770 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 0 < (𝐴𝑙))
114 elnnnn0b 12277 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑙) ∈ ℕ ↔ ((𝐴𝑙) ∈ ℕ0 ∧ 0 < (𝐴𝑙)))
115 nnge1 12001 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑙) ∈ ℕ → 1 ≤ (𝐴𝑙))
116114, 115sylbir 234 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑙) ∈ ℕ0 ∧ 0 < (𝐴𝑙)) → 1 ≤ (𝐴𝑙))
117108, 113, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 1 ≤ (𝐴𝑙))
11851, 109, 112, 117lemulge12d 11913 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ≤ ((𝐴𝑙) · 𝑙))
119107nn0cnd 12295 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℂ)
12049nncnd 11989 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℂ)
121119, 120mulcld 10995 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴𝑙) · 𝑙) ∈ ℂ)
122 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑙𝑡 = 𝑙)
12341, 122oveq12d 7293 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑙 → ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
124123sumsn 15458 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ ∧ ((𝐴𝑙) · 𝑙) ∈ ℂ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
12549, 121, 124syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
126 snfi 8834 . . . . . . . . . . . . . . . . . . . 20 {𝑙} ∈ Fin
127126a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ∈ Fin)
12849snssd 4742 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ⊆ ℕ)
12968nn0ge0d 12296 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 0 ≤ ((𝐴𝑡) · 𝑡))
13021, 52, 127, 128, 64, 69, 129, 103isumless 15557 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
131125, 130eqbrtrrd 5098 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
132131adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → ((𝐴𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13351, 110, 105, 118, 132letrd 11132 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13448, 51, 105, 106, 133ltletrd 11135 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
135134r19.29an 3217 . . . . . . . . . . . . 13 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13646, 135gtned 11110 . . . . . . . . . . . 12 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴))
137136ex 413 . . . . . . . . . . 11 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙)) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴)))
13844, 137syl5bi 241 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴)))
139138necon2bd 2959 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) = (𝑆𝐴) → ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡))))
14039, 139mpd 15 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
141 ralnex 3167 . . . . . . . 8 (∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
142140, 141sylibr 233 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
143 imnan 400 . . . . . . . 8 (((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)) ↔ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
144143ralbii 3092 . . . . . . 7 (∀𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)) ↔ ∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
145142, 144sylibr 233 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)))
146145r19.21bi 3134 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)))
147146imp 407 . . . 4 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ (𝑆𝐴) < 𝑡) → ¬ 0 < (𝐴𝑡))
14817, 12, 33, 147syl21anc 835 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ¬ 0 < (𝐴𝑡))
149 nn0re 12242 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → (𝐴𝑡) ∈ ℝ)
150 0red 10978 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → 0 ∈ ℝ)
151149, 150lenltd 11121 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → ((𝐴𝑡) ≤ 0 ↔ ¬ 0 < (𝐴𝑡)))
152 nn0le0eq0 12261 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → ((𝐴𝑡) ≤ 0 ↔ (𝐴𝑡) = 0))
153151, 152bitr3d 280 . . . 4 ((𝐴𝑡) ∈ ℕ0 → (¬ 0 < (𝐴𝑡) ↔ (𝐴𝑡) = 0))
154153biimpa 477 . . 3 (((𝐴𝑡) ∈ ℕ0 ∧ ¬ 0 < (𝐴𝑡)) → (𝐴𝑡) = 0)
15516, 148, 154syl2anc 584 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) = 0)
1568, 155sylbir 234 1 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cin 3886  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  eulerpartlemsv3  32328  eulerpartlemgc  32329
  Copyright terms: Public domain W3C validator