Proof of Theorem lgsqr
| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 4131 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
| 2 | 1 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ 𝑃 ∈
ℙ) |
| 3 | | prmz 16712 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ 𝑃 ∈
ℤ) |
| 5 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ 𝐴 ∈
ℤ) |
| 6 | 4, 5 | gcdcomd 16551 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) |
| 7 | 6 | eqeq1d 2739 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1)) |
| 8 | | coprm 16748 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬
𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
| 9 | 2, 5, 8 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (¬ 𝑃 ∥
𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
| 10 | | lgsne0 27379 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
| 11 | 5, 4, 10 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃)
≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
| 12 | 7, 9, 11 | 3bitr4d 311 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (¬ 𝑃 ∥
𝐴 ↔ (𝐴 /L 𝑃) ≠ 0)) |
| 13 | 12 | necon4bbid 2982 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑃 ∥ 𝐴 ↔ (𝐴 /L 𝑃) = 0)) |
| 14 | | 0ne1 12337 |
. . . . . 6
⊢ 0 ≠
1 |
| 15 | | neeq1 3003 |
. . . . . 6
⊢ ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 1 ↔ 0 ≠ 1)) |
| 16 | 14, 15 | mpbiri 258 |
. . . . 5
⊢ ((𝐴 /L 𝑃) = 0 → (𝐴 /L 𝑃) ≠ 1) |
| 17 | 13, 16 | biimtrdi 253 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑃 ∥ 𝐴 → (𝐴 /L 𝑃) ≠ 1)) |
| 18 | 17 | necon2bd 2956 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ ¬ 𝑃 ∥
𝐴)) |
| 19 | | lgsqrlem5 27394 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})
∧ (𝐴
/L 𝑃) =
1) → ∃𝑥 ∈
ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) |
| 20 | 19 | 3expia 1122 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ ∃𝑥 ∈
ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
| 21 | 18, 20 | jcad 512 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ (¬ 𝑃 ∥
𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))) |
| 22 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℤ) |
| 23 | 22 | zred 12722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℝ) |
| 24 | | absresq 15341 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ →
((abs‘𝑥)↑2) =
(𝑥↑2)) |
| 25 | 23, 24 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥)↑2) = (𝑥↑2)) |
| 26 | 25 | oveq1d 7446 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = ((𝑥↑2) /L 𝑃)) |
| 27 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ 𝐴) |
| 28 | 1 | ad3antlr 731 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℙ) |
| 29 | 28, 3 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℤ) |
| 30 | | zsqcl 14169 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) |
| 31 | 22, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥↑2) ∈ ℤ) |
| 32 | | simplll 775 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝐴 ∈ ℤ) |
| 33 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ ((𝑥↑2) − 𝐴)) |
| 34 | | dvdssub2 16338 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧
𝐴 ∈ ℤ) ∧
𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴)) |
| 35 | 29, 31, 32, 33, 34 | syl31anc 1375 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴)) |
| 36 | 27, 35 | mtbird 325 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (𝑥↑2)) |
| 37 | | 2nn 12339 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
| 38 | 37 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ∈
ℕ) |
| 39 | | prmdvdsexp 16752 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑃 ∥
(𝑥↑2) ↔ 𝑃 ∥ 𝑥)) |
| 40 | 28, 22, 38, 39 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝑥)) |
| 41 | 36, 40 | mtbid 324 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ 𝑥) |
| 42 | | dvds0 16309 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 0) |
| 43 | 29, 42 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ 0) |
| 44 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ 0)) |
| 45 | 43, 44 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥 = 0 → 𝑃 ∥ 𝑥)) |
| 46 | 45 | necon3bd 2954 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ 𝑥 → 𝑥 ≠ 0)) |
| 47 | 41, 46 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ≠ 0) |
| 48 | | nnabscl 15364 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (abs‘𝑥) ∈
ℕ) |
| 49 | 22, 47, 48 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℕ) |
| 50 | 49 | nnzd 12640 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℤ) |
| 51 | 49 | nnne0d 12316 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ≠ 0) |
| 52 | 50, 29 | gcdcomd 16551 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥))) |
| 53 | | dvdsabsb 16313 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ (abs‘𝑥))) |
| 54 | 29, 22, 53 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ (abs‘𝑥))) |
| 55 | 41, 54 | mtbid 324 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (abs‘𝑥)) |
| 56 | | coprm 16748 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧
(abs‘𝑥) ∈
ℤ) → (¬ 𝑃
∥ (abs‘𝑥)
↔ (𝑃 gcd
(abs‘𝑥)) =
1)) |
| 57 | 28, 50, 56 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1)) |
| 58 | 55, 57 | mpbid 232 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 gcd (abs‘𝑥)) = 1) |
| 59 | 52, 58 | eqtrd 2777 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = 1) |
| 60 | | lgssq 27381 |
. . . . . 6
⊢
((((abs‘𝑥)
∈ ℤ ∧ (abs‘𝑥) ≠ 0) ∧ 𝑃 ∈ ℤ ∧ ((abs‘𝑥) gcd 𝑃) = 1) → (((abs‘𝑥)↑2) /L
𝑃) = 1) |
| 61 | 50, 51, 29, 59, 60 | syl211anc 1378 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = 1) |
| 62 | | prmnn 16711 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 63 | 28, 62 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℕ) |
| 64 | | moddvds 16301 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧
𝐴 ∈ ℤ) →
(((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
| 65 | 63, 31, 32, 64 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
| 66 | 33, 65 | mpbird 257 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃)) |
| 67 | 66 | oveq1d 7446 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝐴 mod 𝑃) /L 𝑃)) |
| 68 | | eldifsni 4790 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) |
| 69 | 68 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ≠ 2) |
| 70 | 69 | necomd 2996 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ≠ 𝑃) |
| 71 | | 2z 12649 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 72 | | uzid 12893 |
. . . . . . . . . 10
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
| 73 | 71, 72 | ax-mp 5 |
. . . . . . . . 9
⊢ 2 ∈
(ℤ≥‘2) |
| 74 | | dvdsprm 16740 |
. . . . . . . . . 10
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
| 75 | 74 | necon3bbid 2978 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (¬ 2 ∥
𝑃 ↔ 2 ≠ 𝑃)) |
| 76 | 73, 28, 75 | sylancr 587 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃)) |
| 77 | 70, 76 | mpbird 257 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 2 ∥ 𝑃) |
| 78 | | lgsmod 27367 |
. . . . . . 7
⊢ (((𝑥↑2) ∈ ℤ ∧
𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃)) |
| 79 | 31, 63, 77, 78 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃)) |
| 80 | | lgsmod 27367 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃)) |
| 81 | 32, 63, 77, 80 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃)) |
| 82 | 67, 79, 81 | 3eqtr3d 2785 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) /L 𝑃) = (𝐴 /L 𝑃)) |
| 83 | 26, 61, 82 | 3eqtr3rd 2786 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝐴 /L 𝑃) = 1) |
| 84 | 83 | rexlimdvaa 3156 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝐴 /L 𝑃) = 1)) |
| 85 | 84 | expimpd 453 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((¬ 𝑃 ∥
𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝐴 /L 𝑃) = 1)) |
| 86 | 21, 85 | impbid 212 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
↔ (¬ 𝑃 ∥
𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))) |