MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqr Structured version   Visualization version   GIF version

Theorem lgsqr 27380
Description: The Legendre symbol for odd primes is 1 iff the number is not a multiple of the prime (in which case it is 0, see lgsne0 27364) and the number is a quadratic residue mod 𝑃 (it is -1 for nonresidues by the process of elimination from lgsabs1 27365). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqr ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqr
StepHypRef Expression
1 eldifi 4126 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 480 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 16676 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 simpl 481 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ)
64, 5gcdcomd 16514 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
76eqeq1d 2728 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
8 coprm 16712 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
92, 5, 8syl2anc 582 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
10 lgsne0 27364 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
115, 4, 10syl2anc 582 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
127, 9, 113bitr4d 310 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝐴 /L 𝑃) ≠ 0))
1312necon4bbid 2972 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 ↔ (𝐴 /L 𝑃) = 0))
14 0ne1 12335 . . . . . 6 0 ≠ 1
15 neeq1 2993 . . . . . 6 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 1 ↔ 0 ≠ 1))
1614, 15mpbiri 257 . . . . 5 ((𝐴 /L 𝑃) = 0 → (𝐴 /L 𝑃) ≠ 1)
1713, 16biimtrdi 252 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 → (𝐴 /L 𝑃) ≠ 1))
1817necon2bd 2946 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝐴))
19 lgsqrlem5 27379 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
20193expia 1118 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
2118, 20jcad 511 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
22 simprl 769 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℤ)
2322zred 12718 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℝ)
24 absresq 15307 . . . . . . 7 (𝑥 ∈ ℝ → ((abs‘𝑥)↑2) = (𝑥↑2))
2523, 24syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥)↑2) = (𝑥↑2))
2625oveq1d 7439 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = ((𝑥↑2) /L 𝑃))
27 simplr 767 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝐴)
281ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℙ)
2928, 3syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℤ)
30 zsqcl 14148 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
3122, 30syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥↑2) ∈ ℤ)
32 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝐴 ∈ ℤ)
33 simprr 771 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ ((𝑥↑2) − 𝐴))
34 dvdssub2 16303 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3529, 31, 32, 33, 34syl31anc 1370 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3627, 35mtbird 324 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (𝑥↑2))
37 2nn 12337 . . . . . . . . . . . 12 2 ∈ ℕ
3837a1i 11 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ∈ ℕ)
39 prmdvdsexp 16716 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4028, 22, 38, 39syl3anc 1368 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4136, 40mtbid 323 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝑥)
42 dvds0 16274 . . . . . . . . . . . 12 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
4329, 42syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ 0)
44 breq2 5157 . . . . . . . . . . 11 (𝑥 = 0 → (𝑃𝑥𝑃 ∥ 0))
4543, 44syl5ibrcom 246 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥 = 0 → 𝑃𝑥))
4645necon3bd 2944 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃𝑥𝑥 ≠ 0))
4741, 46mpd 15 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ≠ 0)
48 nnabscl 15330 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (abs‘𝑥) ∈ ℕ)
4922, 47, 48syl2anc 582 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℕ)
5049nnzd 12637 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℤ)
5149nnne0d 12314 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ≠ 0)
5250, 29gcdcomd 16514 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥)))
53 dvdsabsb 16278 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5429, 22, 53syl2anc 582 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5541, 54mtbid 323 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (abs‘𝑥))
56 coprm 16712 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (abs‘𝑥) ∈ ℤ) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
5728, 50, 56syl2anc 582 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
5855, 57mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 gcd (abs‘𝑥)) = 1)
5952, 58eqtrd 2766 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = 1)
60 lgssq 27366 . . . . . 6 ((((abs‘𝑥) ∈ ℤ ∧ (abs‘𝑥) ≠ 0) ∧ 𝑃 ∈ ℤ ∧ ((abs‘𝑥) gcd 𝑃) = 1) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
6150, 51, 29, 59, 60syl211anc 1373 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
62 prmnn 16675 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6328, 62syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℕ)
64 moddvds 16267 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6563, 31, 32, 64syl3anc 1368 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6633, 65mpbird 256 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
6766oveq1d 7439 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝐴 mod 𝑃) /L 𝑃))
68 eldifsni 4799 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
6968ad3antlr 729 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ≠ 2)
7069necomd 2986 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ≠ 𝑃)
71 2z 12646 . . . . . . . . . 10 2 ∈ ℤ
72 uzid 12889 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
7371, 72ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
74 dvdsprm 16704 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
7574necon3bbid 2968 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7673, 28, 75sylancr 585 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7770, 76mpbird 256 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 2 ∥ 𝑃)
78 lgsmod 27352 . . . . . . 7 (((𝑥↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
7931, 63, 77, 78syl3anc 1368 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
80 lgsmod 27352 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8132, 63, 77, 80syl3anc 1368 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8267, 79, 813eqtr3d 2774 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) /L 𝑃) = (𝐴 /L 𝑃))
8326, 61, 823eqtr3rd 2775 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝐴 /L 𝑃) = 1)
8483rexlimdvaa 3146 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝐴 /L 𝑃) = 1))
8584expimpd 452 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝐴 /L 𝑃) = 1))
8621, 85impbid 211 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cdif 3944  {csn 4633   class class class wbr 5153  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159  cmin 11494  cn 12264  2c2 12319  cz 12610  cuz 12874   mod cmo 13889  cexp 14081  abscabs 15239  cdvds 16256   gcd cgcd 16494  cprime 16672   /L clgs 27323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-ec 8736  df-qs 8740  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-gcd 16495  df-prm 16673  df-phi 16768  df-pc 16839  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-imas 17523  df-qus 17524  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-nsg 19118  df-eqg 19119  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-srg 20170  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-dvr 20383  df-rhm 20454  df-nzr 20495  df-subrng 20528  df-subrg 20553  df-rlreg 20672  df-domn 20673  df-idom 20674  df-drng 20709  df-field 20710  df-lmod 20838  df-lss 20909  df-lsp 20949  df-sra 21151  df-rgmod 21152  df-lidl 21197  df-rsp 21198  df-2idl 21239  df-cnfld 21344  df-zring 21437  df-zrh 21493  df-zn 21496  df-assa 21851  df-asp 21852  df-ascl 21853  df-psr 21906  df-mvr 21907  df-mpl 21908  df-opsr 21910  df-evls 22087  df-evl 22088  df-psr1 22169  df-vr1 22170  df-ply1 22171  df-coe1 22172  df-evl1 22307  df-mdeg 26079  df-deg1 26080  df-mon1 26158  df-uc1p 26159  df-q1p 26160  df-r1p 26161  df-lgs 27324
This theorem is referenced by:  lgsqrmod  27381  2sqlem11  27458  2sqblem  27460
  Copyright terms: Public domain W3C validator