Proof of Theorem lgsqr
Step | Hyp | Ref
| Expression |
1 | | eldifi 4041 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
2 | 1 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ 𝑃 ∈
ℙ) |
3 | | prmz 16232 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
4 | 2, 3 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ 𝑃 ∈
ℤ) |
5 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ 𝐴 ∈
ℤ) |
6 | 4, 5 | gcdcomd 16073 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) |
7 | 6 | eqeq1d 2739 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1)) |
8 | | coprm 16268 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬
𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
9 | 2, 5, 8 | syl2anc 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (¬ 𝑃 ∥
𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
10 | | lgsne0 26216 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
11 | 5, 4, 10 | syl2anc 587 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃)
≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
12 | 7, 9, 11 | 3bitr4d 314 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (¬ 𝑃 ∥
𝐴 ↔ (𝐴 /L 𝑃) ≠ 0)) |
13 | 12 | necon4bbid 2982 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑃 ∥ 𝐴 ↔ (𝐴 /L 𝑃) = 0)) |
14 | | 0ne1 11901 |
. . . . . 6
⊢ 0 ≠
1 |
15 | | neeq1 3003 |
. . . . . 6
⊢ ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 1 ↔ 0 ≠ 1)) |
16 | 14, 15 | mpbiri 261 |
. . . . 5
⊢ ((𝐴 /L 𝑃) = 0 → (𝐴 /L 𝑃) ≠ 1) |
17 | 13, 16 | syl6bi 256 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ (𝑃 ∥ 𝐴 → (𝐴 /L 𝑃) ≠ 1)) |
18 | 17 | necon2bd 2956 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ ¬ 𝑃 ∥
𝐴)) |
19 | | lgsqrlem5 26231 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})
∧ (𝐴
/L 𝑃) =
1) → ∃𝑥 ∈
ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) |
20 | 19 | 3expia 1123 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ ∃𝑥 ∈
ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
21 | 18, 20 | jcad 516 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ (¬ 𝑃 ∥
𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))) |
22 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℤ) |
23 | 22 | zred 12282 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℝ) |
24 | | absresq 14866 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ →
((abs‘𝑥)↑2) =
(𝑥↑2)) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥)↑2) = (𝑥↑2)) |
26 | 25 | oveq1d 7228 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = ((𝑥↑2) /L 𝑃)) |
27 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ 𝐴) |
28 | 1 | ad3antlr 731 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℙ) |
29 | 28, 3 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℤ) |
30 | | zsqcl 13700 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) |
31 | 22, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥↑2) ∈ ℤ) |
32 | | simplll 775 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝐴 ∈ ℤ) |
33 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ ((𝑥↑2) − 𝐴)) |
34 | | dvdssub2 15862 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧
𝐴 ∈ ℤ) ∧
𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴)) |
35 | 29, 31, 32, 33, 34 | syl31anc 1375 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴)) |
36 | 27, 35 | mtbird 328 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (𝑥↑2)) |
37 | | 2nn 11903 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
38 | 37 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ∈
ℕ) |
39 | | prmdvdsexp 16272 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑃 ∥
(𝑥↑2) ↔ 𝑃 ∥ 𝑥)) |
40 | 28, 22, 38, 39 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝑥)) |
41 | 36, 40 | mtbid 327 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ 𝑥) |
42 | | dvds0 15833 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 0) |
43 | 29, 42 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ 0) |
44 | | breq2 5057 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ 0)) |
45 | 43, 44 | syl5ibrcom 250 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥 = 0 → 𝑃 ∥ 𝑥)) |
46 | 45 | necon3bd 2954 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ 𝑥 → 𝑥 ≠ 0)) |
47 | 41, 46 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ≠ 0) |
48 | | nnabscl 14889 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (abs‘𝑥) ∈
ℕ) |
49 | 22, 47, 48 | syl2anc 587 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℕ) |
50 | 49 | nnzd 12281 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℤ) |
51 | 49 | nnne0d 11880 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ≠ 0) |
52 | 50, 29 | gcdcomd 16073 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥))) |
53 | | dvdsabsb 15837 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ (abs‘𝑥))) |
54 | 29, 22, 53 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ 𝑥 ↔ 𝑃 ∥ (abs‘𝑥))) |
55 | 41, 54 | mtbid 327 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (abs‘𝑥)) |
56 | | coprm 16268 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧
(abs‘𝑥) ∈
ℤ) → (¬ 𝑃
∥ (abs‘𝑥)
↔ (𝑃 gcd
(abs‘𝑥)) =
1)) |
57 | 28, 50, 56 | syl2anc 587 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1)) |
58 | 55, 57 | mpbid 235 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 gcd (abs‘𝑥)) = 1) |
59 | 52, 58 | eqtrd 2777 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = 1) |
60 | | lgssq 26218 |
. . . . . 6
⊢
((((abs‘𝑥)
∈ ℤ ∧ (abs‘𝑥) ≠ 0) ∧ 𝑃 ∈ ℤ ∧ ((abs‘𝑥) gcd 𝑃) = 1) → (((abs‘𝑥)↑2) /L
𝑃) = 1) |
61 | 50, 51, 29, 59, 60 | syl211anc 1378 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = 1) |
62 | | prmnn 16231 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
63 | 28, 62 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℕ) |
64 | | moddvds 15826 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧
𝐴 ∈ ℤ) →
(((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
65 | 63, 31, 32, 64 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
66 | 33, 65 | mpbird 260 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃)) |
67 | 66 | oveq1d 7228 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝐴 mod 𝑃) /L 𝑃)) |
68 | | eldifsni 4703 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) |
69 | 68 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ≠ 2) |
70 | 69 | necomd 2996 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ≠ 𝑃) |
71 | | 2z 12209 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
72 | | uzid 12453 |
. . . . . . . . . 10
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
73 | 71, 72 | ax-mp 5 |
. . . . . . . . 9
⊢ 2 ∈
(ℤ≥‘2) |
74 | | dvdsprm 16260 |
. . . . . . . . . 10
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
75 | 74 | necon3bbid 2978 |
. . . . . . . . 9
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (¬ 2 ∥
𝑃 ↔ 2 ≠ 𝑃)) |
76 | 73, 28, 75 | sylancr 590 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃)) |
77 | 70, 76 | mpbird 260 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 2 ∥ 𝑃) |
78 | | lgsmod 26204 |
. . . . . . 7
⊢ (((𝑥↑2) ∈ ℤ ∧
𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃)) |
79 | 31, 63, 77, 78 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃)) |
80 | | lgsmod 26204 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃)) |
81 | 32, 63, 77, 80 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃)) |
82 | 67, 79, 81 | 3eqtr3d 2785 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) /L 𝑃) = (𝐴 /L 𝑃)) |
83 | 26, 61, 82 | 3eqtr3rd 2786 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝐴 /L 𝑃) = 1) |
84 | 83 | rexlimdvaa 3204 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ ¬ 𝑃 ∥ 𝐴) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝐴 /L 𝑃) = 1)) |
85 | 84 | expimpd 457 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((¬ 𝑃 ∥
𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝐴 /L 𝑃) = 1)) |
86 | 21, 85 | impbid 215 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
↔ (¬ 𝑃 ∥
𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))) |