MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqr Structured version   Visualization version   GIF version

Theorem lgsqr 25841
Description: The Legendre symbol for odd primes is 1 iff the number is not a multiple of the prime (in which case it is 0, see lgsne0 25825) and the number is a quadratic residue mod 𝑃 (it is -1 for nonresidues by the process of elimination from lgsabs1 25826). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqr ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqr
StepHypRef Expression
1 eldifi 4106 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 16011 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ)
6 gcdcom 15854 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
74, 5, 6syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
87eqeq1d 2826 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
9 coprm 16047 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
102, 5, 9syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
11 lgsne0 25825 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
125, 4, 11syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
138, 10, 123bitr4d 312 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝐴 /L 𝑃) ≠ 0))
1413necon4bbid 3061 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 ↔ (𝐴 /L 𝑃) = 0))
15 0ne1 11700 . . . . . 6 0 ≠ 1
16 neeq1 3082 . . . . . 6 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 1 ↔ 0 ≠ 1))
1715, 16mpbiri 259 . . . . 5 ((𝐴 /L 𝑃) = 0 → (𝐴 /L 𝑃) ≠ 1)
1814, 17syl6bi 254 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 → (𝐴 /L 𝑃) ≠ 1))
1918necon2bd 3036 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝐴))
20 lgsqrlem5 25840 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
21203expia 1115 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
2219, 21jcad 513 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
23 simprl 767 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℤ)
2423zred 12079 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℝ)
25 absresq 14655 . . . . . . 7 (𝑥 ∈ ℝ → ((abs‘𝑥)↑2) = (𝑥↑2))
2624, 25syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥)↑2) = (𝑥↑2))
2726oveq1d 7166 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = ((𝑥↑2) /L 𝑃))
28 simplr 765 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝐴)
291ad3antlr 727 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℙ)
3029, 3syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℤ)
31 zsqcl 13487 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
3223, 31syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥↑2) ∈ ℤ)
33 simplll 771 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝐴 ∈ ℤ)
34 simprr 769 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ ((𝑥↑2) − 𝐴))
35 dvdssub2 15643 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3630, 32, 33, 34, 35syl31anc 1367 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3728, 36mtbird 326 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (𝑥↑2))
38 2nn 11702 . . . . . . . . . . . 12 2 ∈ ℕ
3938a1i 11 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ∈ ℕ)
40 prmdvdsexp 16051 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4129, 23, 39, 40syl3anc 1365 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4237, 41mtbid 325 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝑥)
43 dvds0 15617 . . . . . . . . . . . 12 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
4430, 43syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ 0)
45 breq2 5066 . . . . . . . . . . 11 (𝑥 = 0 → (𝑃𝑥𝑃 ∥ 0))
4644, 45syl5ibrcom 248 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥 = 0 → 𝑃𝑥))
4746necon3bd 3034 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃𝑥𝑥 ≠ 0))
4842, 47mpd 15 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ≠ 0)
49 nnabscl 14678 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (abs‘𝑥) ∈ ℕ)
5023, 48, 49syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℕ)
5150nnzd 12078 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℤ)
5250nnne0d 11679 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ≠ 0)
53 gcdcom 15854 . . . . . . . 8 (((abs‘𝑥) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥)))
5451, 30, 53syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥)))
55 dvdsabsb 15621 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5630, 23, 55syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5742, 56mtbid 325 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (abs‘𝑥))
58 coprm 16047 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (abs‘𝑥) ∈ ℤ) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
5929, 51, 58syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
6057, 59mpbid 233 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 gcd (abs‘𝑥)) = 1)
6154, 60eqtrd 2860 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = 1)
62 lgssq 25827 . . . . . 6 ((((abs‘𝑥) ∈ ℤ ∧ (abs‘𝑥) ≠ 0) ∧ 𝑃 ∈ ℤ ∧ ((abs‘𝑥) gcd 𝑃) = 1) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
6351, 52, 30, 61, 62syl211anc 1370 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
64 prmnn 16010 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6529, 64syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℕ)
66 moddvds 15610 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6765, 32, 33, 66syl3anc 1365 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6834, 67mpbird 258 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
6968oveq1d 7166 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝐴 mod 𝑃) /L 𝑃))
70 eldifsni 4720 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
7170ad3antlr 727 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ≠ 2)
7271necomd 3075 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ≠ 𝑃)
73 2z 12006 . . . . . . . . . 10 2 ∈ ℤ
74 uzid 12250 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
7573, 74ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
76 dvdsprm 16039 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
7776necon3bbid 3057 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7875, 29, 77sylancr 587 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7972, 78mpbird 258 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 2 ∥ 𝑃)
80 lgsmod 25813 . . . . . . 7 (((𝑥↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
8132, 65, 79, 80syl3anc 1365 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
82 lgsmod 25813 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8333, 65, 79, 82syl3anc 1365 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8469, 81, 833eqtr3d 2868 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) /L 𝑃) = (𝐴 /L 𝑃))
8527, 63, 843eqtr3rd 2869 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝐴 /L 𝑃) = 1)
8685rexlimdvaa 3289 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝐴 /L 𝑃) = 1))
8786expimpd 454 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝐴 /L 𝑃) = 1))
8822, 87impbid 213 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wne 3020  wrex 3143  cdif 3936  {csn 4563   class class class wbr 5062  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530  cmin 10862  cn 11630  2c2 11684  cz 11973  cuz 12235   mod cmo 13230  cexp 13422  abscabs 14586  cdvds 15599   gcd cgcd 15835  cprime 16007   /L clgs 25784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-ofr 7403  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15600  df-gcd 15836  df-prm 16008  df-phi 16095  df-pc 16166  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-imas 16773  df-qus 16774  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-nsg 18209  df-eqg 18210  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-srg 19178  df-ring 19221  df-cring 19222  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-rnghom 19389  df-drng 19426  df-field 19427  df-subrg 19455  df-lmod 19558  df-lss 19626  df-lsp 19666  df-sra 19866  df-rgmod 19867  df-lidl 19868  df-rsp 19869  df-2idl 19926  df-nzr 19952  df-rlreg 19977  df-domn 19978  df-idom 19979  df-assa 20006  df-asp 20007  df-ascl 20008  df-psr 20057  df-mvr 20058  df-mpl 20059  df-opsr 20061  df-evls 20206  df-evl 20207  df-psr1 20265  df-vr1 20266  df-ply1 20267  df-coe1 20268  df-evl1 20396  df-cnfld 20462  df-zring 20534  df-zrh 20567  df-zn 20570  df-mdeg 24564  df-deg1 24565  df-mon1 24639  df-uc1p 24640  df-q1p 24641  df-r1p 24642  df-lgs 25785
This theorem is referenced by:  lgsqrmod  25842  2sqlem11  25919  2sqblem  25921
  Copyright terms: Public domain W3C validator