MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqr Structured version   Visualization version   GIF version

Theorem lgsqr 26699
Description: The Legendre symbol for odd primes is 1 iff the number is not a multiple of the prime (in which case it is 0, see lgsne0 26683) and the number is a quadratic residue mod 𝑃 (it is -1 for nonresidues by the process of elimination from lgsabs1 26684). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqr ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqr
StepHypRef Expression
1 eldifi 4086 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 16551 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ)
64, 5gcdcomd 16394 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
76eqeq1d 2738 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
8 coprm 16587 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
92, 5, 8syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
10 lgsne0 26683 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
115, 4, 10syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
127, 9, 113bitr4d 310 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝐴 /L 𝑃) ≠ 0))
1312necon4bbid 2985 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 ↔ (𝐴 /L 𝑃) = 0))
14 0ne1 12224 . . . . . 6 0 ≠ 1
15 neeq1 3006 . . . . . 6 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 1 ↔ 0 ≠ 1))
1614, 15mpbiri 257 . . . . 5 ((𝐴 /L 𝑃) = 0 → (𝐴 /L 𝑃) ≠ 1)
1713, 16syl6bi 252 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 → (𝐴 /L 𝑃) ≠ 1))
1817necon2bd 2959 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝐴))
19 lgsqrlem5 26698 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
20193expia 1121 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
2118, 20jcad 513 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
22 simprl 769 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℤ)
2322zred 12607 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℝ)
24 absresq 15187 . . . . . . 7 (𝑥 ∈ ℝ → ((abs‘𝑥)↑2) = (𝑥↑2))
2523, 24syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥)↑2) = (𝑥↑2))
2625oveq1d 7372 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = ((𝑥↑2) /L 𝑃))
27 simplr 767 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝐴)
281ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℙ)
2928, 3syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℤ)
30 zsqcl 14034 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
3122, 30syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥↑2) ∈ ℤ)
32 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝐴 ∈ ℤ)
33 simprr 771 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ ((𝑥↑2) − 𝐴))
34 dvdssub2 16183 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3529, 31, 32, 33, 34syl31anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3627, 35mtbird 324 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (𝑥↑2))
37 2nn 12226 . . . . . . . . . . . 12 2 ∈ ℕ
3837a1i 11 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ∈ ℕ)
39 prmdvdsexp 16591 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4028, 22, 38, 39syl3anc 1371 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4136, 40mtbid 323 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝑥)
42 dvds0 16154 . . . . . . . . . . . 12 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
4329, 42syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ 0)
44 breq2 5109 . . . . . . . . . . 11 (𝑥 = 0 → (𝑃𝑥𝑃 ∥ 0))
4543, 44syl5ibrcom 246 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥 = 0 → 𝑃𝑥))
4645necon3bd 2957 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃𝑥𝑥 ≠ 0))
4741, 46mpd 15 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ≠ 0)
48 nnabscl 15210 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (abs‘𝑥) ∈ ℕ)
4922, 47, 48syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℕ)
5049nnzd 12526 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℤ)
5149nnne0d 12203 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ≠ 0)
5250, 29gcdcomd 16394 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥)))
53 dvdsabsb 16158 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5429, 22, 53syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5541, 54mtbid 323 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (abs‘𝑥))
56 coprm 16587 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (abs‘𝑥) ∈ ℤ) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
5728, 50, 56syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
5855, 57mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 gcd (abs‘𝑥)) = 1)
5952, 58eqtrd 2776 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = 1)
60 lgssq 26685 . . . . . 6 ((((abs‘𝑥) ∈ ℤ ∧ (abs‘𝑥) ≠ 0) ∧ 𝑃 ∈ ℤ ∧ ((abs‘𝑥) gcd 𝑃) = 1) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
6150, 51, 29, 59, 60syl211anc 1376 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
62 prmnn 16550 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6328, 62syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℕ)
64 moddvds 16147 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6563, 31, 32, 64syl3anc 1371 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6633, 65mpbird 256 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
6766oveq1d 7372 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝐴 mod 𝑃) /L 𝑃))
68 eldifsni 4750 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
6968ad3antlr 729 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ≠ 2)
7069necomd 2999 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ≠ 𝑃)
71 2z 12535 . . . . . . . . . 10 2 ∈ ℤ
72 uzid 12778 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
7371, 72ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
74 dvdsprm 16579 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
7574necon3bbid 2981 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7673, 28, 75sylancr 587 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7770, 76mpbird 256 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 2 ∥ 𝑃)
78 lgsmod 26671 . . . . . . 7 (((𝑥↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
7931, 63, 77, 78syl3anc 1371 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
80 lgsmod 26671 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8132, 63, 77, 80syl3anc 1371 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8267, 79, 813eqtr3d 2784 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) /L 𝑃) = (𝐴 /L 𝑃))
8326, 61, 823eqtr3rd 2785 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝐴 /L 𝑃) = 1)
8483rexlimdvaa 3153 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝐴 /L 𝑃) = 1))
8584expimpd 454 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝐴 /L 𝑃) = 1))
8621, 85impbid 211 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052  cmin 11385  cn 12153  2c2 12208  cz 12499  cuz 12763   mod cmo 13774  cexp 13967  abscabs 15119  cdvds 16136   gcd cgcd 16374  cprime 16547   /L clgs 26642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-phi 16638  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-imas 17390  df-qus 17391  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-nzr 20728  df-rlreg 20753  df-domn 20754  df-idom 20755  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-evls 21482  df-evl 21483  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-evl1 21682  df-mdeg 25417  df-deg1 25418  df-mon1 25495  df-uc1p 25496  df-q1p 25497  df-r1p 25498  df-lgs 26643
This theorem is referenced by:  lgsqrmod  26700  2sqlem11  26777  2sqblem  26779
  Copyright terms: Public domain W3C validator