MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqr Structured version   Visualization version   GIF version

Theorem lgsqr 25913
Description: The Legendre symbol for odd primes is 1 iff the number is not a multiple of the prime (in which case it is 0, see lgsne0 25897) and the number is a quadratic residue mod 𝑃 (it is -1 for nonresidues by the process of elimination from lgsabs1 25898). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqr ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqr
StepHypRef Expression
1 eldifi 4091 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
21adantl 484 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ)
3 prmz 16002 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42, 3syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℤ)
5 simpl 485 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ)
6 gcdcom 15845 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
74, 5, 6syl2anc 586 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃))
87eqeq1d 2823 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1))
9 coprm 16038 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
102, 5, 9syl2anc 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
11 lgsne0 25897 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
125, 4, 11syl2anc 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1))
138, 10, 123bitr4d 313 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ 𝑃𝐴 ↔ (𝐴 /L 𝑃) ≠ 0))
1413necon4bbid 3057 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 ↔ (𝐴 /L 𝑃) = 0))
15 0ne1 11695 . . . . . 6 0 ≠ 1
16 neeq1 3078 . . . . . 6 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) ≠ 1 ↔ 0 ≠ 1))
1715, 16mpbiri 260 . . . . 5 ((𝐴 /L 𝑃) = 0 → (𝐴 /L 𝑃) ≠ 1)
1814, 17syl6bi 255 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝐴 → (𝐴 /L 𝑃) ≠ 1))
1918necon2bd 3032 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝐴))
20 lgsqrlem5 25912 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
21203expia 1117 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
2219, 21jcad 515 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
23 simprl 769 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℤ)
2423zred 12074 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ∈ ℝ)
25 absresq 14647 . . . . . . 7 (𝑥 ∈ ℝ → ((abs‘𝑥)↑2) = (𝑥↑2))
2624, 25syl 17 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥)↑2) = (𝑥↑2))
2726oveq1d 7157 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = ((𝑥↑2) /L 𝑃))
28 simplr 767 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝐴)
291ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℙ)
3029, 3syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℤ)
31 zsqcl 13484 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
3223, 31syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥↑2) ∈ ℤ)
33 simplll 773 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝐴 ∈ ℤ)
34 simprr 771 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ ((𝑥↑2) − 𝐴))
35 dvdssub2 15636 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3630, 32, 33, 34, 35syl31anc 1369 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
3728, 36mtbird 327 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (𝑥↑2))
38 2nn 11697 . . . . . . . . . . . 12 2 ∈ ℕ
3938a1i 11 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ∈ ℕ)
40 prmdvdsexp 16042 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4129, 23, 39, 40syl3anc 1367 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
4237, 41mtbid 326 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃𝑥)
43 dvds0 15610 . . . . . . . . . . . 12 (𝑃 ∈ ℤ → 𝑃 ∥ 0)
4430, 43syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∥ 0)
45 breq2 5056 . . . . . . . . . . 11 (𝑥 = 0 → (𝑃𝑥𝑃 ∥ 0))
4644, 45syl5ibrcom 249 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑥 = 0 → 𝑃𝑥))
4746necon3bd 3030 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃𝑥𝑥 ≠ 0))
4842, 47mpd 15 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑥 ≠ 0)
49 nnabscl 14670 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → (abs‘𝑥) ∈ ℕ)
5023, 48, 49syl2anc 586 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℕ)
5150nnzd 12073 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ∈ ℤ)
5250nnne0d 11674 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (abs‘𝑥) ≠ 0)
53 gcdcom 15845 . . . . . . . 8 (((abs‘𝑥) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥)))
5451, 30, 53syl2anc 586 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = (𝑃 gcd (abs‘𝑥)))
55 dvdsabsb 15614 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5630, 23, 55syl2anc 586 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃𝑥𝑃 ∥ (abs‘𝑥)))
5742, 56mtbid 326 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 𝑃 ∥ (abs‘𝑥))
58 coprm 16038 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (abs‘𝑥) ∈ ℤ) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
5929, 51, 58syl2anc 586 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 𝑃 ∥ (abs‘𝑥) ↔ (𝑃 gcd (abs‘𝑥)) = 1))
6057, 59mpbid 234 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝑃 gcd (abs‘𝑥)) = 1)
6154, 60eqtrd 2856 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((abs‘𝑥) gcd 𝑃) = 1)
62 lgssq 25899 . . . . . 6 ((((abs‘𝑥) ∈ ℤ ∧ (abs‘𝑥) ≠ 0) ∧ 𝑃 ∈ ℤ ∧ ((abs‘𝑥) gcd 𝑃) = 1) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
6351, 52, 30, 61, 62syl211anc 1372 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((abs‘𝑥)↑2) /L 𝑃) = 1)
64 prmnn 16001 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6529, 64syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ∈ ℕ)
66 moddvds 15603 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6765, 32, 33, 66syl3anc 1367 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
6834, 67mpbird 259 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
6968oveq1d 7157 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝐴 mod 𝑃) /L 𝑃))
70 eldifsni 4708 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
7170ad3antlr 729 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 𝑃 ≠ 2)
7271necomd 3071 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → 2 ≠ 𝑃)
73 2z 12001 . . . . . . . . . 10 2 ∈ ℤ
74 uzid 12245 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
7573, 74ax-mp 5 . . . . . . . . 9 2 ∈ (ℤ‘2)
76 dvdsprm 16030 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
7776necon3bbid 3053 . . . . . . . . 9 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7875, 29, 77sylancr 589 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (¬ 2 ∥ 𝑃 ↔ 2 ≠ 𝑃))
7972, 78mpbird 259 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ¬ 2 ∥ 𝑃)
80 lgsmod 25885 . . . . . . 7 (((𝑥↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
8132, 65, 79, 80syl3anc 1367 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (((𝑥↑2) mod 𝑃) /L 𝑃) = ((𝑥↑2) /L 𝑃))
82 lgsmod 25885 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8333, 65, 79, 82syl3anc 1367 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝐴 mod 𝑃) /L 𝑃) = (𝐴 /L 𝑃))
8469, 81, 833eqtr3d 2864 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → ((𝑥↑2) /L 𝑃) = (𝐴 /L 𝑃))
8527, 63, 843eqtr3rd 2865 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴))) → (𝐴 /L 𝑃) = 1)
8685rexlimdvaa 3285 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝐴 /L 𝑃) = 1))
8786expimpd 456 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝐴 /L 𝑃) = 1))
8822, 87impbid 214 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3921  {csn 4553   class class class wbr 5052  cfv 6341  (class class class)co 7142  cr 10522  0cc0 10523  1c1 10524  cmin 10856  cn 11624  2c2 11679  cz 11968  cuz 12230   mod cmo 13227  cexp 13419  abscabs 14578  cdvds 15592   gcd cgcd 15826  cprime 15998   /L clgs 25856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601  ax-addf 10602  ax-mulf 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-ofr 7396  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-tpos 7878  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-ec 8277  df-qs 8281  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-xnn0 11955  df-z 11969  df-dec 12086  df-uz 12231  df-q 12336  df-rp 12377  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-dvds 15593  df-gcd 15827  df-prm 15999  df-phi 16086  df-pc 16157  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-starv 16563  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-unif 16571  df-hom 16572  df-cco 16573  df-0g 16698  df-gsum 16699  df-prds 16704  df-pws 16706  df-imas 16764  df-qus 16765  df-mre 16840  df-mrc 16841  df-acs 16843  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-mhm 17939  df-submnd 17940  df-grp 18089  df-minusg 18090  df-sbg 18091  df-mulg 18208  df-subg 18259  df-nsg 18260  df-eqg 18261  df-ghm 18339  df-cntz 18430  df-cmn 18891  df-abl 18892  df-mgp 19223  df-ur 19235  df-srg 19239  df-ring 19282  df-cring 19283  df-oppr 19356  df-dvdsr 19374  df-unit 19375  df-invr 19405  df-dvr 19416  df-rnghom 19450  df-drng 19487  df-field 19488  df-subrg 19516  df-lmod 19619  df-lss 19687  df-lsp 19727  df-sra 19927  df-rgmod 19928  df-lidl 19929  df-rsp 19930  df-2idl 19988  df-nzr 20014  df-rlreg 20039  df-domn 20040  df-idom 20041  df-assa 20068  df-asp 20069  df-ascl 20070  df-psr 20119  df-mvr 20120  df-mpl 20121  df-opsr 20123  df-evls 20269  df-evl 20270  df-psr1 20331  df-vr1 20332  df-ply1 20333  df-coe1 20334  df-evl1 20462  df-cnfld 20529  df-zring 20601  df-zrh 20634  df-zn 20637  df-mdeg 24635  df-deg1 24636  df-mon1 24710  df-uc1p 24711  df-q1p 24712  df-r1p 24713  df-lgs 25857
This theorem is referenced by:  lgsqrmod  25914  2sqlem11  25991  2sqblem  25993
  Copyright terms: Public domain W3C validator