HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stadd3i Structured version   Visualization version   GIF version

Theorem stadd3i 30019
Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
stm1add3.3 𝐶C
Assertion
Ref Expression
stadd3i (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))

Proof of Theorem stadd3i
StepHypRef Expression
1 stle.1 . . . . . 6 𝐴C
2 stcl 29987 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
43recnd 10663 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℂ)
5 stle.2 . . . . . 6 𝐵C
6 stcl 29987 . . . . . 6 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
75, 6mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
87recnd 10663 . . . 4 (𝑆 ∈ States → (𝑆𝐵) ∈ ℂ)
9 stm1add3.3 . . . . . 6 𝐶C
10 stcl 29987 . . . . . 6 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ∈ ℝ))
119, 10mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐶) ∈ ℝ)
1211recnd 10663 . . . 4 (𝑆 ∈ States → (𝑆𝐶) ∈ ℂ)
134, 8, 12addassd 10657 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1413eqeq1d 2823 . 2 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 ↔ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3))
15 eqcom 2828 . . . 4 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 ↔ 3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
167, 11readdcld 10664 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ∈ ℝ)
173, 16readdcld 10664 . . . . . 6 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ)
18 ltne 10731 . . . . . . 7 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3) → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1918ex 415 . . . . . 6 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2017, 19syl 17 . . . . 5 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2120necon2bd 3032 . . . 4 (𝑆 ∈ States → (3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
2215, 21syl5bi 244 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
23 1re 10635 . . . . . . . . . . 11 1 ∈ ℝ
2423, 23readdcli 10650 . . . . . . . . . 10 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
26 1red 10636 . . . . . . . . . 10 (𝑆 ∈ States → 1 ∈ ℝ)
27 stle1 29996 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
285, 27mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
29 stle1 29996 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ≤ 1))
309, 29mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐶) ≤ 1)
317, 11, 26, 26, 28, 30le2addd 11253 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ≤ (1 + 1))
3216, 25, 3, 31leadd2dd 11249 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
3332adantr 483 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
34 ltadd1 11101 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3534biimpd 231 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
363, 26, 25, 35syl3anc 1367 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3736imp 409 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1)))
38 readdcl 10614 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
393, 24, 38sylancl 588 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
4023, 24readdcli 10650 . . . . . . . . . 10 (1 + (1 + 1)) ∈ ℝ
4140a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + (1 + 1)) ∈ ℝ)
42 lelttr 10725 . . . . . . . . 9 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + (1 + 1)) ∈ ℝ ∧ (1 + (1 + 1)) ∈ ℝ) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4317, 39, 41, 42syl3anc 1367 . . . . . . . 8 (𝑆 ∈ States → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4443adantr 483 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4533, 37, 44mp2and 697 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1)))
46 df-3 11695 . . . . . . 7 3 = (2 + 1)
47 df-2 11694 . . . . . . . 8 2 = (1 + 1)
4847oveq1i 7160 . . . . . . 7 (2 + 1) = ((1 + 1) + 1)
49 ax-1cn 10589 . . . . . . . 8 1 ∈ ℂ
5049, 49, 49addassi 10645 . . . . . . 7 ((1 + 1) + 1) = (1 + (1 + 1))
5146, 48, 503eqtrri 2849 . . . . . 6 (1 + (1 + 1)) = 3
5245, 51breqtrdi 5100 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3)
5352ex 415 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
5453con3d 155 . . 3 (𝑆 ∈ States → (¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → ¬ (𝑆𝐴) < 1))
55 stle1 29996 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
561, 55mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
57 leloe 10721 . . . . . 6 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
583, 23, 57sylancl 588 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
5956, 58mpbid 234 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
6059ord 860 . . 3 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
6122, 54, 603syld 60 . 2 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → (𝑆𝐴) = 1))
6214, 61sylbid 242 1 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  2c2 11686  3c3 11687   C cch 28700  Statescst 28733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-hilex 28770
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-2 11694  df-3 11695  df-icc 12739  df-sh 28978  df-ch 28992  df-st 29982
This theorem is referenced by:  golem2  30043
  Copyright terms: Public domain W3C validator