HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stadd3i Structured version   Visualization version   GIF version

Theorem stadd3i 32005
Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
stm1add3.3 𝐶C
Assertion
Ref Expression
stadd3i (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))

Proof of Theorem stadd3i
StepHypRef Expression
1 stle.1 . . . . . 6 𝐴C
2 stcl 31973 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
43recnd 11243 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℂ)
5 stle.2 . . . . . 6 𝐵C
6 stcl 31973 . . . . . 6 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
75, 6mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
87recnd 11243 . . . 4 (𝑆 ∈ States → (𝑆𝐵) ∈ ℂ)
9 stm1add3.3 . . . . . 6 𝐶C
10 stcl 31973 . . . . . 6 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ∈ ℝ))
119, 10mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐶) ∈ ℝ)
1211recnd 11243 . . . 4 (𝑆 ∈ States → (𝑆𝐶) ∈ ℂ)
134, 8, 12addassd 11237 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1413eqeq1d 2728 . 2 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 ↔ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3))
15 eqcom 2733 . . . 4 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 ↔ 3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
167, 11readdcld 11244 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ∈ ℝ)
173, 16readdcld 11244 . . . . . 6 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ)
18 ltne 11312 . . . . . . 7 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3) → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1918ex 412 . . . . . 6 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2017, 19syl 17 . . . . 5 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2120necon2bd 2950 . . . 4 (𝑆 ∈ States → (3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
2215, 21biimtrid 241 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
23 1re 11215 . . . . . . . . . . 11 1 ∈ ℝ
2423, 23readdcli 11230 . . . . . . . . . 10 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
26 1red 11216 . . . . . . . . . 10 (𝑆 ∈ States → 1 ∈ ℝ)
27 stle1 31982 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
285, 27mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
29 stle1 31982 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ≤ 1))
309, 29mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐶) ≤ 1)
317, 11, 26, 26, 28, 30le2addd 11834 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ≤ (1 + 1))
3216, 25, 3, 31leadd2dd 11830 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
3332adantr 480 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
34 ltadd1 11682 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3534biimpd 228 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
363, 26, 25, 35syl3anc 1368 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3736imp 406 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1)))
38 readdcl 11192 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
393, 24, 38sylancl 585 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
4023, 24readdcli 11230 . . . . . . . . . 10 (1 + (1 + 1)) ∈ ℝ
4140a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + (1 + 1)) ∈ ℝ)
42 lelttr 11305 . . . . . . . . 9 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + (1 + 1)) ∈ ℝ ∧ (1 + (1 + 1)) ∈ ℝ) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4317, 39, 41, 42syl3anc 1368 . . . . . . . 8 (𝑆 ∈ States → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4443adantr 480 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4533, 37, 44mp2and 696 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1)))
46 df-3 12277 . . . . . . 7 3 = (2 + 1)
47 df-2 12276 . . . . . . . 8 2 = (1 + 1)
4847oveq1i 7414 . . . . . . 7 (2 + 1) = ((1 + 1) + 1)
49 ax-1cn 11167 . . . . . . . 8 1 ∈ ℂ
5049, 49, 49addassi 11225 . . . . . . 7 ((1 + 1) + 1) = (1 + (1 + 1))
5146, 48, 503eqtrri 2759 . . . . . 6 (1 + (1 + 1)) = 3
5245, 51breqtrdi 5182 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3)
5352ex 412 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
5453con3d 152 . . 3 (𝑆 ∈ States → (¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → ¬ (𝑆𝐴) < 1))
55 stle1 31982 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
561, 55mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
57 leloe 11301 . . . . . 6 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
583, 23, 57sylancl 585 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
5956, 58mpbid 231 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
6059ord 861 . . 3 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
6122, 54, 603syld 60 . 2 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → (𝑆𝐴) = 1))
6214, 61sylbid 239 1 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wne 2934   class class class wbr 5141  cfv 6536  (class class class)co 7404  cr 11108  1c1 11110   + caddc 11112   < clt 11249  cle 11250  2c2 12268  3c3 12269   C cch 30686  Statescst 30719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-hilex 30756
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-2 12276  df-3 12277  df-icc 13334  df-sh 30964  df-ch 30978  df-st 31968
This theorem is referenced by:  golem2  32029
  Copyright terms: Public domain W3C validator