HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stadd3i Structured version   Visualization version   GIF version

Theorem stadd3i 29800
Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
stm1add3.3 𝐶C
Assertion
Ref Expression
stadd3i (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))

Proof of Theorem stadd3i
StepHypRef Expression
1 stle.1 . . . . . 6 𝐴C
2 stcl 29768 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
43recnd 10462 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℂ)
5 stle.2 . . . . . 6 𝐵C
6 stcl 29768 . . . . . 6 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
75, 6mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
87recnd 10462 . . . 4 (𝑆 ∈ States → (𝑆𝐵) ∈ ℂ)
9 stm1add3.3 . . . . . 6 𝐶C
10 stcl 29768 . . . . . 6 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ∈ ℝ))
119, 10mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐶) ∈ ℝ)
1211recnd 10462 . . . 4 (𝑆 ∈ States → (𝑆𝐶) ∈ ℂ)
134, 8, 12addassd 10456 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1413eqeq1d 2774 . 2 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 ↔ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3))
15 eqcom 2779 . . . 4 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 ↔ 3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
167, 11readdcld 10463 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ∈ ℝ)
173, 16readdcld 10463 . . . . . 6 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ)
18 ltne 10531 . . . . . . 7 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3) → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1918ex 405 . . . . . 6 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2017, 19syl 17 . . . . 5 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2120necon2bd 2977 . . . 4 (𝑆 ∈ States → (3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
2215, 21syl5bi 234 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
23 1re 10433 . . . . . . . . . . 11 1 ∈ ℝ
2423, 23readdcli 10449 . . . . . . . . . 10 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
26 1red 10434 . . . . . . . . . 10 (𝑆 ∈ States → 1 ∈ ℝ)
27 stle1 29777 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
285, 27mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
29 stle1 29777 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ≤ 1))
309, 29mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐶) ≤ 1)
317, 11, 26, 26, 28, 30le2addd 11054 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ≤ (1 + 1))
3216, 25, 3, 31leadd2dd 11050 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
3332adantr 473 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
34 ltadd1 10902 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3534biimpd 221 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
363, 26, 25, 35syl3anc 1351 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3736imp 398 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1)))
38 readdcl 10412 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
393, 24, 38sylancl 577 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
4023, 24readdcli 10449 . . . . . . . . . 10 (1 + (1 + 1)) ∈ ℝ
4140a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + (1 + 1)) ∈ ℝ)
42 lelttr 10525 . . . . . . . . 9 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + (1 + 1)) ∈ ℝ ∧ (1 + (1 + 1)) ∈ ℝ) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4317, 39, 41, 42syl3anc 1351 . . . . . . . 8 (𝑆 ∈ States → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4443adantr 473 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4533, 37, 44mp2and 686 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1)))
46 df-3 11498 . . . . . . 7 3 = (2 + 1)
47 df-2 11497 . . . . . . . 8 2 = (1 + 1)
4847oveq1i 6980 . . . . . . 7 (2 + 1) = ((1 + 1) + 1)
49 ax-1cn 10387 . . . . . . . 8 1 ∈ ℂ
5049, 49, 49addassi 10444 . . . . . . 7 ((1 + 1) + 1) = (1 + (1 + 1))
5146, 48, 503eqtrri 2801 . . . . . 6 (1 + (1 + 1)) = 3
5245, 51syl6breq 4964 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3)
5352ex 405 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
5453con3d 150 . . 3 (𝑆 ∈ States → (¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → ¬ (𝑆𝐴) < 1))
55 stle1 29777 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
561, 55mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
57 leloe 10521 . . . . . 6 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
583, 23, 57sylancl 577 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
5956, 58mpbid 224 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
6059ord 850 . . 3 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
6122, 54, 603syld 60 . 2 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → (𝑆𝐴) = 1))
6214, 61sylbid 232 1 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  wne 2961   class class class wbr 4923  cfv 6182  (class class class)co 6970  cr 10328  1c1 10330   + caddc 10332   < clt 10468  cle 10469  2c2 11489  3c3 11490   C cch 28479  Statescst 28512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-hilex 28549
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-2 11497  df-3 11498  df-icc 12555  df-sh 28757  df-ch 28771  df-st 29763
This theorem is referenced by:  golem2  29824
  Copyright terms: Public domain W3C validator