Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  stadd3i Structured version   Visualization version   GIF version

 Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
Assertion
Ref Expression
stadd3i (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))

Proof of Theorem stadd3i
StepHypRef Expression
1 stle.1 . . . . . 6 𝐴C
2 stcl 30113 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
43recnd 10721 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ∈ ℂ)
5 stle.2 . . . . . 6 𝐵C
6 stcl 30113 . . . . . 6 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
75, 6mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
87recnd 10721 . . . 4 (𝑆 ∈ States → (𝑆𝐵) ∈ ℂ)
9 stm1add3.3 . . . . . 6 𝐶C
10 stcl 30113 . . . . . 6 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ∈ ℝ))
119, 10mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐶) ∈ ℝ)
1211recnd 10721 . . . 4 (𝑆 ∈ States → (𝑆𝐶) ∈ ℂ)
134, 8, 12addassd 10715 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1413eqeq1d 2761 . 2 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 ↔ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3))
15 eqcom 2766 . . . 4 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 ↔ 3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
167, 11readdcld 10722 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ∈ ℝ)
173, 16readdcld 10722 . . . . . 6 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ)
18 ltne 10789 . . . . . . 7 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3) → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))))
1918ex 416 . . . . . 6 (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2017, 19syl 17 . . . . 5 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → 3 ≠ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶)))))
2120necon2bd 2968 . . . 4 (𝑆 ∈ States → (3 = ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
2215, 21syl5bi 245 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → ¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
23 1re 10693 . . . . . . . . . . 11 1 ∈ ℝ
2423, 23readdcli 10708 . . . . . . . . . 10 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
26 1red 10694 . . . . . . . . . 10 (𝑆 ∈ States → 1 ∈ ℝ)
27 stle1 30122 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
285, 27mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
29 stle1 30122 . . . . . . . . . . 11 (𝑆 ∈ States → (𝐶C → (𝑆𝐶) ≤ 1))
309, 29mpi 20 . . . . . . . . . 10 (𝑆 ∈ States → (𝑆𝐶) ≤ 1)
317, 11, 26, 26, 28, 30le2addd 11311 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐵) + (𝑆𝐶)) ≤ (1 + 1))
3216, 25, 3, 31leadd2dd 11307 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
3332adantr 484 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)))
34 ltadd1 11159 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3534biimpd 232 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
363, 26, 25, 35syl3anc 1369 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))))
3736imp 410 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1)))
38 readdcl 10672 . . . . . . . . . 10 (((𝑆𝐴) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
393, 24, 38sylancl 589 . . . . . . . . 9 (𝑆 ∈ States → ((𝑆𝐴) + (1 + 1)) ∈ ℝ)
4023, 24readdcli 10708 . . . . . . . . . 10 (1 + (1 + 1)) ∈ ℝ
4140a1i 11 . . . . . . . . 9 (𝑆 ∈ States → (1 + (1 + 1)) ∈ ℝ)
42 lelttr 10783 . . . . . . . . 9 ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ∈ ℝ ∧ ((𝑆𝐴) + (1 + 1)) ∈ ℝ ∧ (1 + (1 + 1)) ∈ ℝ) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4317, 39, 41, 42syl3anc 1369 . . . . . . . 8 (𝑆 ∈ States → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4443adantr 484 . . . . . . 7 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) ≤ ((𝑆𝐴) + (1 + 1)) ∧ ((𝑆𝐴) + (1 + 1)) < (1 + (1 + 1))) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1))))
4533, 37, 44mp2and 698 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < (1 + (1 + 1)))
46 df-3 11752 . . . . . . 7 3 = (2 + 1)
47 df-2 11751 . . . . . . . 8 2 = (1 + 1)
4847oveq1i 7167 . . . . . . 7 (2 + 1) = ((1 + 1) + 1)
49 ax-1cn 10647 . . . . . . . 8 1 ∈ ℂ
5049, 49, 49addassi 10703 . . . . . . 7 ((1 + 1) + 1) = (1 + (1 + 1))
5146, 48, 503eqtrri 2787 . . . . . 6 (1 + (1 + 1)) = 3
5245, 51breqtrdi 5078 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3)
5352ex 416 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3))
5453con3d 155 . . 3 (𝑆 ∈ States → (¬ ((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) < 3 → ¬ (𝑆𝐴) < 1))
55 stle1 30122 . . . . . 6 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
561, 55mpi 20 . . . . 5 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
57 leloe 10779 . . . . . 6 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
583, 23, 57sylancl 589 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
5956, 58mpbid 235 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
6059ord 861 . . 3 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
6122, 54, 603syld 60 . 2 (𝑆 ∈ States → (((𝑆𝐴) + ((𝑆𝐵) + (𝑆𝐶))) = 3 → (𝑆𝐴) = 1))
6214, 61sylbid 243 1 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952   class class class wbr 5037  ‘cfv 6341  (class class class)co 7157  ℝcr 10588  1c1 10590   + caddc 10592   < clt 10727   ≤ cle 10728  2c2 11743  3c3 11744   Cℋ cch 28826  Statescst 28859 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-hilex 28896 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-po 5448  df-so 5449  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-er 8306  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-2 11751  df-3 11752  df-icc 12800  df-sh 29104  df-ch 29118  df-st 30108 This theorem is referenced by:  golem2  30169
 Copyright terms: Public domain W3C validator