MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltirr Structured version   Visualization version   GIF version

Theorem pltirr 18236
Description: The "less than" relation is not reflexive. (pssirr 4053 analog.) (Contributed by NM, 7-Feb-2012.)
Hypothesis
Ref Expression
pltne.s < = (lt‘𝐾)
Assertion
Ref Expression
pltirr ((𝐾𝐴𝑋𝐵) → ¬ 𝑋 < 𝑋)

Proof of Theorem pltirr
StepHypRef Expression
1 eqid 2731 . 2 𝑋 = 𝑋
2 pltne.s . . . . 5 < = (lt‘𝐾)
32pltne 18235 . . . 4 ((𝐾𝐴𝑋𝐵𝑋𝐵) → (𝑋 < 𝑋𝑋𝑋))
433anidm23 1423 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋 < 𝑋𝑋𝑋))
54necon2bd 2944 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋 < 𝑋))
61, 5mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  ltcplt 18211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-plt 18231
This theorem is referenced by:  pospo  18246  atnlt  39351  llnnlt  39561  lplnnlt  39603  lvolnltN  39656
  Copyright terms: Public domain W3C validator