| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltirr | Structured version Visualization version GIF version | ||
| Description: The "less than" relation is not reflexive. (pssirr 4069 analog.) (Contributed by NM, 7-Feb-2012.) |
| Ref | Expression |
|---|---|
| pltne.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltirr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ 𝑋 = 𝑋 | |
| 2 | pltne.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 3 | 2 | pltne 18300 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
| 4 | 3 | 3anidm23 1423 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
| 5 | 4 | necon2bd 2942 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋 < 𝑋)) |
| 6 | 1, 5 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 ltcplt 18276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-plt 18296 |
| This theorem is referenced by: pospo 18311 atnlt 39313 llnnlt 39524 lplnnlt 39566 lvolnltN 39619 |
| Copyright terms: Public domain | W3C validator |