MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltirr Structured version   Visualization version   GIF version

Theorem pltirr 18241
Description: The "less than" relation is not reflexive. (pssirr 4052 analog.) (Contributed by NM, 7-Feb-2012.)
Hypothesis
Ref Expression
pltne.s < = (lt‘𝐾)
Assertion
Ref Expression
pltirr ((𝐾𝐴𝑋𝐵) → ¬ 𝑋 < 𝑋)

Proof of Theorem pltirr
StepHypRef Expression
1 eqid 2733 . 2 𝑋 = 𝑋
2 pltne.s . . . . 5 < = (lt‘𝐾)
32pltne 18240 . . . 4 ((𝐾𝐴𝑋𝐵𝑋𝐵) → (𝑋 < 𝑋𝑋𝑋))
433anidm23 1423 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋 < 𝑋𝑋𝑋))
54necon2bd 2945 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋 < 𝑋))
61, 5mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  ltcplt 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-plt 18236
This theorem is referenced by:  pospo  18251  atnlt  39432  llnnlt  39642  lplnnlt  39684  lvolnltN  39737
  Copyright terms: Public domain W3C validator