Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltirr | Structured version Visualization version GIF version |
Description: The "less than" relation is not reflexive. (pssirr 3992 analog.) (Contributed by NM, 7-Feb-2012.) |
Ref | Expression |
---|---|
pltne.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltirr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑋 = 𝑋 | |
2 | pltne.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | 2 | pltne 17689 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
4 | 3 | 3anidm23 1422 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
5 | 4 | necon2bd 2950 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋 < 𝑋)) |
6 | 1, 5 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 class class class wbr 5031 ‘cfv 6340 ltcplt 17668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3683 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-iota 6298 df-fun 6342 df-fv 6348 df-plt 17685 |
This theorem is referenced by: pospo 17700 atnlt 36947 llnnlt 37157 lplnnlt 37199 lvolnltN 37252 |
Copyright terms: Public domain | W3C validator |