MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltirr Structured version   Visualization version   GIF version

Theorem pltirr 18354
Description: The "less than" relation is not reflexive. (pssirr 4085 analog.) (Contributed by NM, 7-Feb-2012.)
Hypothesis
Ref Expression
pltne.s < = (lt‘𝐾)
Assertion
Ref Expression
pltirr ((𝐾𝐴𝑋𝐵) → ¬ 𝑋 < 𝑋)

Proof of Theorem pltirr
StepHypRef Expression
1 eqid 2734 . 2 𝑋 = 𝑋
2 pltne.s . . . . 5 < = (lt‘𝐾)
32pltne 18353 . . . 4 ((𝐾𝐴𝑋𝐵𝑋𝐵) → (𝑋 < 𝑋𝑋𝑋))
433anidm23 1422 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋 < 𝑋𝑋𝑋))
54necon2bd 2947 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋 < 𝑋))
61, 5mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  ltcplt 18329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-plt 18349
This theorem is referenced by:  pospo  18364  atnlt  39255  llnnlt  39466  lplnnlt  39508  lvolnltN  39561
  Copyright terms: Public domain W3C validator