Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltirr | Structured version Visualization version GIF version |
Description: The "less than" relation is not reflexive. (pssirr 4032 analog.) (Contributed by NM, 7-Feb-2012.) |
Ref | Expression |
---|---|
pltne.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltirr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ 𝑋 = 𝑋 | |
2 | pltne.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | 2 | pltne 17942 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
4 | 3 | 3anidm23 1423 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
5 | 4 | necon2bd 2959 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋 < 𝑋)) |
6 | 1, 5 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 class class class wbr 5070 ‘cfv 6415 ltcplt 17916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-iota 6373 df-fun 6417 df-fv 6423 df-plt 17938 |
This theorem is referenced by: pospo 17953 atnlt 37233 llnnlt 37443 lplnnlt 37485 lvolnltN 37538 |
Copyright terms: Public domain | W3C validator |