MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem5 Structured version   Visualization version   GIF version

Theorem infpssrlem5 9718
Description: Lemma for infpssr 9719. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem5 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))

Proof of Theorem infpssrlem5
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpssrlem.a . . . 4 (𝜑𝐵𝐴)
2 infpssrlem.c . . . 4 (𝜑𝐹:𝐵1-1-onto𝐴)
3 infpssrlem.d . . . 4 (𝜑𝐶 ∈ (𝐴𝐵))
4 infpssrlem.e . . . 4 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
51, 2, 3, 4infpssrlem3 9716 . . 3 (𝜑𝐺:ω⟶𝐴)
6 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝜑)
7 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑐 ∈ ω)
8 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑏𝑐)
91, 2, 3, 4infpssrlem4 9717 . . . . . . . . . 10 ((𝜑𝑐 ∈ ω ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
106, 7, 8, 9syl3anc 1368 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
1110necomd 3042 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑏) ≠ (𝐺𝑐))
12 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝜑)
13 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑏 ∈ ω)
14 simpr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑐𝑏)
151, 2, 3, 4infpssrlem4 9717 . . . . . . . . 9 ((𝜑𝑏 ∈ ω ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1612, 13, 14, 15syl3anc 1368 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1711, 16jaodan 955 . . . . . . 7 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ (𝑏𝑐𝑐𝑏)) → (𝐺𝑏) ≠ (𝐺𝑐))
1817ex 416 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝑏𝑐𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐)))
1918necon2bd 3003 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → ¬ (𝑏𝑐𝑐𝑏)))
20 nnord 7568 . . . . . . 7 (𝑏 ∈ ω → Ord 𝑏)
21 nnord 7568 . . . . . . 7 (𝑐 ∈ ω → Ord 𝑐)
22 ordtri3 6195 . . . . . . 7 ((Ord 𝑏 ∧ Ord 𝑐) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2320, 21, 22syl2an 598 . . . . . 6 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2423adantl 485 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2519, 24sylibrd 262 . . . 4 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
2625ralrimivva 3156 . . 3 (𝜑 → ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
27 dff13 6991 . . 3 (𝐺:ω–1-1𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐)))
285, 26, 27sylanbrc 586 . 2 (𝜑𝐺:ω–1-1𝐴)
29 f1domg 8512 . 2 (𝐴𝑉 → (𝐺:ω–1-1𝐴 → ω ≼ 𝐴))
3028, 29syl5com 31 1 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881   class class class wbr 5030  ccnv 5518  cres 5521  Ord word 6158  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  ωcom 7560  reccrdg 8028  cdom 8490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-dom 8494
This theorem is referenced by:  infpssr  9719
  Copyright terms: Public domain W3C validator