MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem5 Structured version   Visualization version   GIF version

Theorem infpssrlem5 10378
Description: Lemma for infpssr 10379. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem5 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))

Proof of Theorem infpssrlem5
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpssrlem.a . . . 4 (𝜑𝐵𝐴)
2 infpssrlem.c . . . 4 (𝜑𝐹:𝐵1-1-onto𝐴)
3 infpssrlem.d . . . 4 (𝜑𝐶 ∈ (𝐴𝐵))
4 infpssrlem.e . . . 4 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
51, 2, 3, 4infpssrlem3 10376 . . 3 (𝜑𝐺:ω⟶𝐴)
6 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝜑)
7 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑐 ∈ ω)
8 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑏𝑐)
91, 2, 3, 4infpssrlem4 10377 . . . . . . . . . 10 ((𝜑𝑐 ∈ ω ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
106, 7, 8, 9syl3anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
1110necomd 3002 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑏) ≠ (𝐺𝑐))
12 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝜑)
13 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑏 ∈ ω)
14 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑐𝑏)
151, 2, 3, 4infpssrlem4 10377 . . . . . . . . 9 ((𝜑𝑏 ∈ ω ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1612, 13, 14, 15syl3anc 1371 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1711, 16jaodan 958 . . . . . . 7 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ (𝑏𝑐𝑐𝑏)) → (𝐺𝑏) ≠ (𝐺𝑐))
1817ex 412 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝑏𝑐𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐)))
1918necon2bd 2962 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → ¬ (𝑏𝑐𝑐𝑏)))
20 nnord 7913 . . . . . . 7 (𝑏 ∈ ω → Ord 𝑏)
21 nnord 7913 . . . . . . 7 (𝑐 ∈ ω → Ord 𝑐)
22 ordtri3 6433 . . . . . . 7 ((Ord 𝑏 ∧ Ord 𝑐) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2320, 21, 22syl2an 595 . . . . . 6 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2423adantl 481 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2519, 24sylibrd 259 . . . 4 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
2625ralrimivva 3208 . . 3 (𝜑 → ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
27 dff13 7294 . . 3 (𝐺:ω–1-1𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐)))
285, 26, 27sylanbrc 582 . 2 (𝜑𝐺:ω–1-1𝐴)
29 f1domg 9034 . 2 (𝐴𝑉 → (𝐺:ω–1-1𝐴 → ω ≼ 𝐴))
3028, 29syl5com 31 1 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  wss 3976   class class class wbr 5166  ccnv 5699  cres 5702  Ord word 6396  wf 6571  1-1wf1 6572  1-1-ontowf1o 6574  cfv 6575  ωcom 7905  reccrdg 8467  cdom 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-dom 9007
This theorem is referenced by:  infpssr  10379
  Copyright terms: Public domain W3C validator