MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0 Structured version   Visualization version   GIF version

Theorem metdseq0 24876
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metdseq0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metdseq0
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2 simprl 771 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝑧𝐽)
3 simprr 773 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐴𝑧)
4 metdscn.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
54mopni2 24506 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝐴𝑧) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
61, 2, 3, 5syl3anc 1373 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
7 simprr 773 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
87ssrind 4244 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆))
9 rpgt0 13047 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → 0 < 𝑟)
10 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
11 rpre 13043 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
12 ltnle 11340 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
1310, 11, 12sylancr 587 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
149, 13mpbid 232 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ¬ 𝑟 ≤ 0)
1514ad2antrl 728 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ¬ 𝑟 ≤ 0)
16 simpllr 776 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐹𝐴) = 0)
1716breq2d 5155 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ 𝑟 ≤ 0))
181adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpl2 1193 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆𝑋)
2019ad2antrr 726 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑆𝑋)
21 simpl3 1194 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴𝑋)
2221ad2antrr 726 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐴𝑋)
23 rpxr 13044 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2423ad2antrl 728 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑟 ∈ ℝ*)
25 metdscn.f . . . . . . . . . . . . 13 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2625metdsge 24871 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2718, 20, 22, 24, 26syl31anc 1375 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2817, 27bitr3d 281 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
29 incom 4209 . . . . . . . . . . 11 (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆)
3029eqeq1i 2742 . . . . . . . . . 10 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅ ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅)
3128, 30bitrdi 287 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅))
3231necon3bbid 2978 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (¬ 𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅))
3315, 32mpbid 232 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅)
34 ssn0 4404 . . . . . . 7 ((((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆) ∧ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅) → (𝑧𝑆) ≠ ∅)
358, 33, 34syl2anc 584 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑧𝑆) ≠ ∅)
366, 35rexlimddv 3161 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → (𝑧𝑆) ≠ ∅)
3736expr 456 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ 𝑧𝐽) → (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
3837ralrimiva 3146 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
394mopntopon 24449 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
40393ad2ant1 1134 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4140adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ (TopOn‘𝑋))
42 topontop 22919 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4341, 42syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ Top)
44 toponuni 22920 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4541, 44syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑋 = 𝐽)
4619, 45sseqtrd 4020 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆 𝐽)
4721, 45eleqtrd 2843 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 𝐽)
48 eqid 2737 . . . . 5 𝐽 = 𝐽
4948elcls 23081 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5043, 46, 47, 49syl3anc 1373 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5138, 50mpbird 257 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
52 incom 4209 . . . . . . 7 ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴)))
5325metdsf 24870 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
5453ffvelcdmda 7104 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
55543impa 1110 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
56 eliccxr 13475 . . . . . . . . . 10 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
5755, 56syl 17 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ ℝ*)
5857xrleidd 13194 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ≤ (𝐹𝐴))
5925metdsge 24871 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6057, 59mpdan 687 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6158, 60mpbid 232 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
6252, 61eqtrid 2789 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6362adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6440ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
6564, 42syl 17 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ Top)
66 simpll2 1214 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆𝑋)
6764, 44syl 17 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑋 = 𝐽)
6866, 67sseqtrd 4020 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆 𝐽)
69 simplr 769 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
70 simpll1 1213 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
71 simpll3 1215 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴𝑋)
7257ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐹𝐴) ∈ ℝ*)
734blopn 24513 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ ℝ*) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
7470, 71, 72, 73syl3anc 1373 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
75 simpr 484 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 0 < (𝐹𝐴))
76 xblcntr 24421 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ ((𝐹𝐴) ∈ ℝ* ∧ 0 < (𝐹𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
7770, 71, 72, 75, 76syl112anc 1376 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
7848clsndisj 23083 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ ((𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
7965, 68, 69, 74, 77, 78syl32anc 1380 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
8079ex 412 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅))
8180necon2bd 2956 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅ → ¬ 0 < (𝐹𝐴)))
8263, 81mpd 15 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ 0 < (𝐹𝐴))
83 elxrge0 13497 . . . . . . . . 9 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
8483simprbi 496 . . . . . . . 8 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
8555, 84syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 0 ≤ (𝐹𝐴))
86 0xr 11308 . . . . . . . 8 0 ∈ ℝ*
87 xrleloe 13186 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
8886, 57, 87sylancr 587 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
8985, 88mpbid 232 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9089adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9190ord 865 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
9282, 91mpd 15 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 0 = (𝐹𝐴))
9392eqcomd 2743 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹𝐴) = 0)
9451, 93impbida 801 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cin 3950  wss 3951  c0 4333   cuni 4907   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  infcinf 9481  cr 11154  0cc0 11155  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  +crp 13034  [,]cicc 13390  ∞Metcxmet 21349  ballcbl 21351  MetOpencmopn 21354  Topctop 22899  TopOnctopon 22916  clsccl 23026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029
This theorem is referenced by:  metnrmlem1a  24880  lebnumlem1  24993
  Copyright terms: Public domain W3C validator