MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0 Structured version   Visualization version   GIF version

Theorem metdseq0 23923
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metdseq0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metdseq0
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1210 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2 simprl 767 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝑧𝐽)
3 simprr 769 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐴𝑧)
4 metdscn.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
54mopni2 23555 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝐴𝑧) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
61, 2, 3, 5syl3anc 1369 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
7 simprr 769 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
87ssrind 4166 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆))
9 rpgt0 12671 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → 0 < 𝑟)
10 0re 10908 . . . . . . . . . . 11 0 ∈ ℝ
11 rpre 12667 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
12 ltnle 10985 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
1310, 11, 12sylancr 586 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
149, 13mpbid 231 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ¬ 𝑟 ≤ 0)
1514ad2antrl 724 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ¬ 𝑟 ≤ 0)
16 simpllr 772 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐹𝐴) = 0)
1716breq2d 5082 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ 𝑟 ≤ 0))
181adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpl2 1190 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆𝑋)
2019ad2antrr 722 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑆𝑋)
21 simpl3 1191 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴𝑋)
2221ad2antrr 722 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐴𝑋)
23 rpxr 12668 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2423ad2antrl 724 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑟 ∈ ℝ*)
25 metdscn.f . . . . . . . . . . . . 13 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2625metdsge 23918 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2718, 20, 22, 24, 26syl31anc 1371 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2817, 27bitr3d 280 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
29 incom 4131 . . . . . . . . . . 11 (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆)
3029eqeq1i 2743 . . . . . . . . . 10 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅ ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅)
3128, 30bitrdi 286 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅))
3231necon3bbid 2980 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (¬ 𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅))
3315, 32mpbid 231 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅)
34 ssn0 4331 . . . . . . 7 ((((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆) ∧ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅) → (𝑧𝑆) ≠ ∅)
358, 33, 34syl2anc 583 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑧𝑆) ≠ ∅)
366, 35rexlimddv 3219 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → (𝑧𝑆) ≠ ∅)
3736expr 456 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ 𝑧𝐽) → (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
3837ralrimiva 3107 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
394mopntopon 23500 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
40393ad2ant1 1131 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4140adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ (TopOn‘𝑋))
42 topontop 21970 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4341, 42syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ Top)
44 toponuni 21971 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4541, 44syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑋 = 𝐽)
4619, 45sseqtrd 3957 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆 𝐽)
4721, 45eleqtrd 2841 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 𝐽)
48 eqid 2738 . . . . 5 𝐽 = 𝐽
4948elcls 22132 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5043, 46, 47, 49syl3anc 1369 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5138, 50mpbird 256 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
52 incom 4131 . . . . . . 7 ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴)))
5325metdsf 23917 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
5453ffvelrnda 6943 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
55543impa 1108 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
56 eliccxr 13096 . . . . . . . . . 10 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
5755, 56syl 17 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ ℝ*)
5857xrleidd 12815 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ≤ (𝐹𝐴))
5925metdsge 23918 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6057, 59mpdan 683 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6158, 60mpbid 231 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
6252, 61eqtrid 2790 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6362adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6440ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
6564, 42syl 17 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ Top)
66 simpll2 1211 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆𝑋)
6764, 44syl 17 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑋 = 𝐽)
6866, 67sseqtrd 3957 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆 𝐽)
69 simplr 765 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
70 simpll1 1210 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
71 simpll3 1212 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴𝑋)
7257ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐹𝐴) ∈ ℝ*)
734blopn 23562 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ ℝ*) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
7470, 71, 72, 73syl3anc 1369 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
75 simpr 484 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 0 < (𝐹𝐴))
76 xblcntr 23472 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ ((𝐹𝐴) ∈ ℝ* ∧ 0 < (𝐹𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
7770, 71, 72, 75, 76syl112anc 1372 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
7848clsndisj 22134 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ ((𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
7965, 68, 69, 74, 77, 78syl32anc 1376 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
8079ex 412 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅))
8180necon2bd 2958 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅ → ¬ 0 < (𝐹𝐴)))
8263, 81mpd 15 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ 0 < (𝐹𝐴))
83 elxrge0 13118 . . . . . . . . 9 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
8483simprbi 496 . . . . . . . 8 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
8555, 84syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 0 ≤ (𝐹𝐴))
86 0xr 10953 . . . . . . . 8 0 ∈ ℝ*
87 xrleloe 12807 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
8886, 57, 87sylancr 586 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
8985, 88mpbid 231 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9089adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9190ord 860 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
9282, 91mpd 15 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 0 = (𝐹𝐴))
9392eqcomd 2744 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹𝐴) = 0)
9451, 93impbida 797 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253   cuni 4836   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  +crp 12659  [,]cicc 13011  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500  Topctop 21950  TopOnctopon 21967  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  metnrmlem1a  23927  lebnumlem1  24030
  Copyright terms: Public domain W3C validator