MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0 Structured version   Visualization version   GIF version

Theorem metdseq0 24590
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metdseq0 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((πΉβ€˜π΄) = 0 ↔ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐷,𝑦   𝑦,𝐽   π‘₯,𝑆,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)   𝐽(π‘₯)

Proof of Theorem metdseq0
Dummy variables π‘Ÿ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1210 . . . . . . 7 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 simprl 767 . . . . . . 7 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) β†’ 𝑧 ∈ 𝐽)
3 simprr 769 . . . . . . 7 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) β†’ 𝐴 ∈ 𝑧)
4 metdscn.j . . . . . . . 8 𝐽 = (MetOpenβ€˜π·)
54mopni2 24222 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)
61, 2, 3, 5syl3anc 1369 . . . . . 6 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)
7 simprr 769 . . . . . . . 8 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)
87ssrind 4234 . . . . . . 7 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ ((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆) βŠ† (𝑧 ∩ 𝑆))
9 rpgt0 12990 . . . . . . . . . 10 (π‘Ÿ ∈ ℝ+ β†’ 0 < π‘Ÿ)
10 0re 11220 . . . . . . . . . . 11 0 ∈ ℝ
11 rpre 12986 . . . . . . . . . . 11 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ)
12 ltnle 11297 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ π‘Ÿ ∈ ℝ) β†’ (0 < π‘Ÿ ↔ Β¬ π‘Ÿ ≀ 0))
1310, 11, 12sylancr 585 . . . . . . . . . 10 (π‘Ÿ ∈ ℝ+ β†’ (0 < π‘Ÿ ↔ Β¬ π‘Ÿ ≀ 0))
149, 13mpbid 231 . . . . . . . . 9 (π‘Ÿ ∈ ℝ+ β†’ Β¬ π‘Ÿ ≀ 0)
1514ad2antrl 724 . . . . . . . 8 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ Β¬ π‘Ÿ ≀ 0)
16 simpllr 772 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (πΉβ€˜π΄) = 0)
1716breq2d 5159 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (π‘Ÿ ≀ (πΉβ€˜π΄) ↔ π‘Ÿ ≀ 0))
181adantr 479 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
19 simpl2 1190 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝑆 βŠ† 𝑋)
2019ad2antrr 722 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ 𝑆 βŠ† 𝑋)
21 simpl3 1191 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝐴 ∈ 𝑋)
2221ad2antrr 722 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ 𝐴 ∈ 𝑋)
23 rpxr 12987 . . . . . . . . . . . . 13 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ*)
2423ad2antrl 724 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ π‘Ÿ ∈ ℝ*)
25 metdscn.f . . . . . . . . . . . . 13 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
2625metdsge 24585 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘Ÿ ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)π‘Ÿ)) = βˆ…))
2718, 20, 22, 24, 26syl31anc 1371 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (π‘Ÿ ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)π‘Ÿ)) = βˆ…))
2817, 27bitr3d 280 . . . . . . . . . 10 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (π‘Ÿ ≀ 0 ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)π‘Ÿ)) = βˆ…))
29 incom 4200 . . . . . . . . . . 11 (𝑆 ∩ (𝐴(ballβ€˜π·)π‘Ÿ)) = ((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆)
3029eqeq1i 2735 . . . . . . . . . 10 ((𝑆 ∩ (𝐴(ballβ€˜π·)π‘Ÿ)) = βˆ… ↔ ((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆) = βˆ…)
3128, 30bitrdi 286 . . . . . . . . 9 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (π‘Ÿ ≀ 0 ↔ ((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆) = βˆ…))
3231necon3bbid 2976 . . . . . . . 8 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (Β¬ π‘Ÿ ≀ 0 ↔ ((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆) β‰  βˆ…))
3315, 32mpbid 231 . . . . . . 7 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ ((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆) β‰  βˆ…)
34 ssn0 4399 . . . . . . 7 ((((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆) βŠ† (𝑧 ∩ 𝑆) ∧ ((𝐴(ballβ€˜π·)π‘Ÿ) ∩ 𝑆) β‰  βˆ…) β†’ (𝑧 ∩ 𝑆) β‰  βˆ…)
358, 33, 34syl2anc 582 . . . . . 6 (((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (π‘Ÿ ∈ ℝ+ ∧ (𝐴(ballβ€˜π·)π‘Ÿ) βŠ† 𝑧)) β†’ (𝑧 ∩ 𝑆) β‰  βˆ…)
366, 35rexlimddv 3159 . . . . 5 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) β†’ (𝑧 ∩ 𝑆) β‰  βˆ…)
3736expr 455 . . . 4 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) ∧ 𝑧 ∈ 𝐽) β†’ (𝐴 ∈ 𝑧 β†’ (𝑧 ∩ 𝑆) β‰  βˆ…))
3837ralrimiva 3144 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ βˆ€π‘§ ∈ 𝐽 (𝐴 ∈ 𝑧 β†’ (𝑧 ∩ 𝑆) β‰  βˆ…))
394mopntopon 24165 . . . . . . 7 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
40393ad2ant1 1131 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
4140adantr 479 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
42 topontop 22635 . . . . 5 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
4341, 42syl 17 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝐽 ∈ Top)
44 toponuni 22636 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
4541, 44syl 17 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝑋 = βˆͺ 𝐽)
4619, 45sseqtrd 4021 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝑆 βŠ† βˆͺ 𝐽)
4721, 45eleqtrd 2833 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝐴 ∈ βˆͺ 𝐽)
48 eqid 2730 . . . . 5 βˆͺ 𝐽 = βˆͺ 𝐽
4948elcls 22797 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 βŠ† βˆͺ 𝐽 ∧ 𝐴 ∈ βˆͺ 𝐽) β†’ (𝐴 ∈ ((clsβ€˜π½)β€˜π‘†) ↔ βˆ€π‘§ ∈ 𝐽 (𝐴 ∈ 𝑧 β†’ (𝑧 ∩ 𝑆) β‰  βˆ…)))
5043, 46, 47, 49syl3anc 1369 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ (𝐴 ∈ ((clsβ€˜π½)β€˜π‘†) ↔ βˆ€π‘§ ∈ 𝐽 (𝐴 ∈ 𝑧 β†’ (𝑧 ∩ 𝑆) β‰  βˆ…)))
5138, 50mpbird 256 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) = 0) β†’ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†))
52 incom 4200 . . . . . . 7 ((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∩ 𝑆) = (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))
5325metdsf 24584 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ 𝐹:π‘‹βŸΆ(0[,]+∞))
5453ffvelcdmda 7085 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ 𝐴 ∈ 𝑋) β†’ (πΉβ€˜π΄) ∈ (0[,]+∞))
55543impa 1108 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (πΉβ€˜π΄) ∈ (0[,]+∞))
56 eliccxr 13416 . . . . . . . . . 10 ((πΉβ€˜π΄) ∈ (0[,]+∞) β†’ (πΉβ€˜π΄) ∈ ℝ*)
5755, 56syl 17 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (πΉβ€˜π΄) ∈ ℝ*)
5857xrleidd 13135 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (πΉβ€˜π΄) ≀ (πΉβ€˜π΄))
5925metdsge 24585 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (πΉβ€˜π΄) ∈ ℝ*) β†’ ((πΉβ€˜π΄) ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…))
6057, 59mpdan 683 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((πΉβ€˜π΄) ≀ (πΉβ€˜π΄) ↔ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…))
6158, 60mpbid 231 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝑆 ∩ (𝐴(ballβ€˜π·)(πΉβ€˜π΄))) = βˆ…)
6252, 61eqtrid 2782 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∩ 𝑆) = βˆ…)
6362adantr 479 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ ((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∩ 𝑆) = βˆ…)
6440ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
6564, 42syl 17 . . . . . . . 8 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐽 ∈ Top)
66 simpll2 1211 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝑆 βŠ† 𝑋)
6764, 44syl 17 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝑋 = βˆͺ 𝐽)
6866, 67sseqtrd 4021 . . . . . . . 8 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝑆 βŠ† βˆͺ 𝐽)
69 simplr 765 . . . . . . . 8 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†))
70 simpll1 1210 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
71 simpll3 1212 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ 𝑋)
7257ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ (πΉβ€˜π΄) ∈ ℝ*)
734blopn 24229 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ (πΉβ€˜π΄) ∈ ℝ*) β†’ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∈ 𝐽)
7470, 71, 72, 73syl3anc 1369 . . . . . . . 8 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∈ 𝐽)
75 simpr 483 . . . . . . . . 9 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 0 < (πΉβ€˜π΄))
76 xblcntr 24137 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ ((πΉβ€˜π΄) ∈ ℝ* ∧ 0 < (πΉβ€˜π΄))) β†’ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))
7770, 71, 72, 75, 76syl112anc 1372 . . . . . . . 8 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))
7848clsndisj 22799 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆 βŠ† βˆͺ 𝐽 ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ ((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∈ 𝐽 ∧ 𝐴 ∈ (𝐴(ballβ€˜π·)(πΉβ€˜π΄)))) β†’ ((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∩ 𝑆) β‰  βˆ…)
7965, 68, 69, 74, 77, 78syl32anc 1376 . . . . . . 7 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) ∧ 0 < (πΉβ€˜π΄)) β†’ ((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∩ 𝑆) β‰  βˆ…)
8079ex 411 . . . . . 6 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ (0 < (πΉβ€˜π΄) β†’ ((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∩ 𝑆) β‰  βˆ…))
8180necon2bd 2954 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ (((𝐴(ballβ€˜π·)(πΉβ€˜π΄)) ∩ 𝑆) = βˆ… β†’ Β¬ 0 < (πΉβ€˜π΄)))
8263, 81mpd 15 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ Β¬ 0 < (πΉβ€˜π΄))
83 elxrge0 13438 . . . . . . . . 9 ((πΉβ€˜π΄) ∈ (0[,]+∞) ↔ ((πΉβ€˜π΄) ∈ ℝ* ∧ 0 ≀ (πΉβ€˜π΄)))
8483simprbi 495 . . . . . . . 8 ((πΉβ€˜π΄) ∈ (0[,]+∞) β†’ 0 ≀ (πΉβ€˜π΄))
8555, 84syl 17 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ 0 ≀ (πΉβ€˜π΄))
86 0xr 11265 . . . . . . . 8 0 ∈ ℝ*
87 xrleloe 13127 . . . . . . . 8 ((0 ∈ ℝ* ∧ (πΉβ€˜π΄) ∈ ℝ*) β†’ (0 ≀ (πΉβ€˜π΄) ↔ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄))))
8886, 57, 87sylancr 585 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (0 ≀ (πΉβ€˜π΄) ↔ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄))))
8985, 88mpbid 231 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄)))
9089adantr 479 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ (0 < (πΉβ€˜π΄) ∨ 0 = (πΉβ€˜π΄)))
9190ord 860 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ (Β¬ 0 < (πΉβ€˜π΄) β†’ 0 = (πΉβ€˜π΄)))
9282, 91mpd 15 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ 0 = (πΉβ€˜π΄))
9392eqcomd 2736 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)) β†’ (πΉβ€˜π΄) = 0)
9451, 93impbida 797 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((πΉβ€˜π΄) = 0 ↔ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  βˆͺ cuni 4907   class class class wbr 5147   ↦ cmpt 5230  ran crn 5676  β€˜cfv 6542  (class class class)co 7411  infcinf 9438  β„cr 11111  0cc0 11112  +∞cpnf 11249  β„*cxr 11251   < clt 11252   ≀ cle 11253  β„+crp 12978  [,]cicc 13331  βˆžMetcxmet 21129  ballcbl 21131  MetOpencmopn 21134  Topctop 22615  TopOnctopon 22632  clsccl 22742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-icc 13335  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-bl 21139  df-mopn 21140  df-top 22616  df-topon 22633  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745
This theorem is referenced by:  metnrmlem1a  24594  lebnumlem1  24707
  Copyright terms: Public domain W3C validator