MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0 Structured version   Visualization version   GIF version

Theorem metdseq0 24750
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metdseq0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metdseq0
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1213 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2 simprl 770 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝑧𝐽)
3 simprr 772 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐴𝑧)
4 metdscn.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
54mopni2 24388 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝐴𝑧) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
61, 2, 3, 5syl3anc 1373 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
7 simprr 772 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
87ssrind 4210 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆))
9 rpgt0 12971 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → 0 < 𝑟)
10 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
11 rpre 12967 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
12 ltnle 11260 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
1310, 11, 12sylancr 587 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
149, 13mpbid 232 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ¬ 𝑟 ≤ 0)
1514ad2antrl 728 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ¬ 𝑟 ≤ 0)
16 simpllr 775 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐹𝐴) = 0)
1716breq2d 5122 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ 𝑟 ≤ 0))
181adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
19 simpl2 1193 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆𝑋)
2019ad2antrr 726 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑆𝑋)
21 simpl3 1194 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴𝑋)
2221ad2antrr 726 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐴𝑋)
23 rpxr 12968 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2423ad2antrl 728 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑟 ∈ ℝ*)
25 metdscn.f . . . . . . . . . . . . 13 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2625metdsge 24745 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2718, 20, 22, 24, 26syl31anc 1375 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2817, 27bitr3d 281 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
29 incom 4175 . . . . . . . . . . 11 (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆)
3029eqeq1i 2735 . . . . . . . . . 10 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅ ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅)
3128, 30bitrdi 287 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅))
3231necon3bbid 2963 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (¬ 𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅))
3315, 32mpbid 232 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅)
34 ssn0 4370 . . . . . . 7 ((((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆) ∧ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅) → (𝑧𝑆) ≠ ∅)
358, 33, 34syl2anc 584 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑧𝑆) ≠ ∅)
366, 35rexlimddv 3141 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → (𝑧𝑆) ≠ ∅)
3736expr 456 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ 𝑧𝐽) → (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
3837ralrimiva 3126 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
394mopntopon 24334 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
40393ad2ant1 1133 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4140adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ (TopOn‘𝑋))
42 topontop 22807 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4341, 42syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ Top)
44 toponuni 22808 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4541, 44syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑋 = 𝐽)
4619, 45sseqtrd 3986 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆 𝐽)
4721, 45eleqtrd 2831 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 𝐽)
48 eqid 2730 . . . . 5 𝐽 = 𝐽
4948elcls 22967 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5043, 46, 47, 49syl3anc 1373 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5138, 50mpbird 257 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
52 incom 4175 . . . . . . 7 ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴)))
5325metdsf 24744 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
5453ffvelcdmda 7059 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
55543impa 1109 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
56 eliccxr 13403 . . . . . . . . . 10 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
5755, 56syl 17 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ ℝ*)
5857xrleidd 13119 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ≤ (𝐹𝐴))
5925metdsge 24745 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6057, 59mpdan 687 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6158, 60mpbid 232 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
6252, 61eqtrid 2777 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6362adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6440ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
6564, 42syl 17 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ Top)
66 simpll2 1214 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆𝑋)
6764, 44syl 17 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑋 = 𝐽)
6866, 67sseqtrd 3986 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆 𝐽)
69 simplr 768 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
70 simpll1 1213 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
71 simpll3 1215 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴𝑋)
7257ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐹𝐴) ∈ ℝ*)
734blopn 24395 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ ℝ*) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
7470, 71, 72, 73syl3anc 1373 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
75 simpr 484 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 0 < (𝐹𝐴))
76 xblcntr 24306 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ ((𝐹𝐴) ∈ ℝ* ∧ 0 < (𝐹𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
7770, 71, 72, 75, 76syl112anc 1376 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
7848clsndisj 22969 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ ((𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
7965, 68, 69, 74, 77, 78syl32anc 1380 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
8079ex 412 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅))
8180necon2bd 2942 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅ → ¬ 0 < (𝐹𝐴)))
8263, 81mpd 15 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ 0 < (𝐹𝐴))
83 elxrge0 13425 . . . . . . . . 9 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
8483simprbi 496 . . . . . . . 8 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
8555, 84syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 0 ≤ (𝐹𝐴))
86 0xr 11228 . . . . . . . 8 0 ∈ ℝ*
87 xrleloe 13111 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
8886, 57, 87sylancr 587 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
8985, 88mpbid 232 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9089adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9190ord 864 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
9282, 91mpd 15 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 0 = (𝐹𝐴))
9392eqcomd 2736 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹𝐴) = 0)
9451, 93impbida 800 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3916  wss 3917  c0 4299   cuni 4874   class class class wbr 5110  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  +crp 12958  [,]cicc 13316  ∞Metcxmet 21256  ballcbl 21258  MetOpencmopn 21261  Topctop 22787  TopOnctopon 22804  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915
This theorem is referenced by:  metnrmlem1a  24754  lebnumlem1  24867
  Copyright terms: Public domain W3C validator