MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supnfcls Structured version   Visualization version   GIF version

Theorem supnfcls 22627
Description: The filter of supersets of 𝑋𝑈 does not cluster at any point of the open set 𝑈. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
supnfcls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝑈
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem supnfcls
StepHypRef Expression
1 disjdif 4420 . 2 (𝑈 ∩ (𝑋𝑈)) = ∅
2 simpr 487 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
3 simpl2 1188 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝑈𝐽)
4 simpl3 1189 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐴𝑈)
5 sseq2 3992 . . . . . 6 (𝑥 = (𝑋𝑈) → ((𝑋𝑈) ⊆ 𝑥 ↔ (𝑋𝑈) ⊆ (𝑋𝑈)))
6 difss 4107 . . . . . . 7 (𝑋𝑈) ⊆ 𝑋
7 simpl1 1187 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐽 ∈ (TopOn‘𝑋))
8 toponmax 21533 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
9 elpw2g 5246 . . . . . . . 8 (𝑋𝐽 → ((𝑋𝑈) ∈ 𝒫 𝑋 ↔ (𝑋𝑈) ⊆ 𝑋))
107, 8, 93syl 18 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → ((𝑋𝑈) ∈ 𝒫 𝑋 ↔ (𝑋𝑈) ⊆ 𝑋))
116, 10mpbiri 260 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ∈ 𝒫 𝑋)
12 ssidd 3989 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ⊆ (𝑋𝑈))
135, 11, 12elrabd 3681 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})
14 fclsopni 22622 . . . . 5 ((𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}) ∧ (𝑈𝐽𝐴𝑈 ∧ (𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅)
152, 3, 4, 13, 14syl13anc 1368 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅)
1615ex 415 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → (𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅))
1716necon2bd 3032 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ((𝑈 ∩ (𝑋𝑈)) = ∅ → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})))
181, 17mpi 20 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  {crab 3142  cdif 3932  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  cfv 6354  (class class class)co 7155  TopOnctopon 21517   fClus cfcls 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-fbas 20541  df-top 21501  df-topon 21518  df-cld 21626  df-ntr 21627  df-cls 21628  df-fil 22453  df-fcls 22548
This theorem is referenced by:  fclscf  22632
  Copyright terms: Public domain W3C validator