MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supnfcls Structured version   Visualization version   GIF version

Theorem supnfcls 22044
Description: The filter of supersets of 𝑋𝑈 does not cluster at any point of the open set 𝑈. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
supnfcls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝑈
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem supnfcls
StepHypRef Expression
1 disjdif 4182 . 2 (𝑈 ∩ (𝑋𝑈)) = ∅
2 simpr 471 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
3 simpl2 1229 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝑈𝐽)
4 simpl3 1231 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐴𝑈)
5 difss 3888 . . . . . . 7 (𝑋𝑈) ⊆ 𝑋
6 simpl1 1227 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐽 ∈ (TopOn‘𝑋))
7 toponmax 20951 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
8 elpw2g 4958 . . . . . . . 8 (𝑋𝐽 → ((𝑋𝑈) ∈ 𝒫 𝑋 ↔ (𝑋𝑈) ⊆ 𝑋))
96, 7, 83syl 18 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → ((𝑋𝑈) ∈ 𝒫 𝑋 ↔ (𝑋𝑈) ⊆ 𝑋))
105, 9mpbiri 248 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ∈ 𝒫 𝑋)
11 ssid 3773 . . . . . . 7 (𝑋𝑈) ⊆ (𝑋𝑈)
1211a1i 11 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ⊆ (𝑋𝑈))
13 sseq2 3776 . . . . . . 7 (𝑥 = (𝑋𝑈) → ((𝑋𝑈) ⊆ 𝑥 ↔ (𝑋𝑈) ⊆ (𝑋𝑈)))
1413elrab 3515 . . . . . 6 ((𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥} ↔ ((𝑋𝑈) ∈ 𝒫 𝑋 ∧ (𝑋𝑈) ⊆ (𝑋𝑈)))
1510, 12, 14sylanbrc 564 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})
16 fclsopni 22039 . . . . 5 ((𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}) ∧ (𝑈𝐽𝐴𝑈 ∧ (𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅)
172, 3, 4, 15, 16syl13anc 1478 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅)
1817ex 397 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → (𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅))
1918necon2bd 2959 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ((𝑈 ∩ (𝑋𝑈)) = ∅ → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})))
201, 19mpi 20 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  {crab 3065  cdif 3720  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  cfv 6031  (class class class)co 6793  TopOnctopon 20935   fClus cfcls 21960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-fbas 19958  df-top 20919  df-topon 20936  df-cld 21044  df-ntr 21045  df-cls 21046  df-fil 21870  df-fcls 21965
This theorem is referenced by:  fclscf  22049
  Copyright terms: Public domain W3C validator