Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnrefN Structured version   Visualization version   GIF version

Theorem cvrnrefN 37296
Description: The covers relation is not reflexive. (cvnref 30653 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrne.b 𝐵 = (Base‘𝐾)
cvrne.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnrefN ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)

Proof of Theorem cvrnrefN
StepHypRef Expression
1 eqid 2738 . 2 𝑋 = 𝑋
2 simpll 764 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝐾𝐴)
3 simplr 766 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐵)
4 simpr 485 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋)
5 cvrne.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrne.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 37295 . . . . 5 (((𝐾𝐴𝑋𝐵𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
82, 3, 3, 4, 7syl31anc 1372 . . . 4 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
98ex 413 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋𝐶𝑋𝑋𝑋))
109necon2bd 2959 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋))
111, 10mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  Basecbs 16912  ccvr 37276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-plt 18048  df-covers 37280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator