Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnrefN Structured version   Visualization version   GIF version

Theorem cvrnrefN 37223
Description: The covers relation is not reflexive. (cvnref 30554 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrne.b 𝐵 = (Base‘𝐾)
cvrne.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnrefN ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)

Proof of Theorem cvrnrefN
StepHypRef Expression
1 eqid 2738 . 2 𝑋 = 𝑋
2 simpll 763 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝐾𝐴)
3 simplr 765 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐵)
4 simpr 484 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋)
5 cvrne.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrne.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 37222 . . . . 5 (((𝐾𝐴𝑋𝐵𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
82, 3, 3, 4, 7syl31anc 1371 . . . 4 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
98ex 412 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋𝐶𝑋𝑋𝑋))
109necon2bd 2958 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋))
111, 10mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  Basecbs 16840  ccvr 37203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-plt 17963  df-covers 37207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator