![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnrefN | Structured version Visualization version GIF version |
Description: The covers relation is not reflexive. (cvnref 32129 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvrne.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrne.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrnrefN | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . 2 ⊢ 𝑋 = 𝑋 | |
2 | simpll 765 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝐾 ∈ 𝐴) | |
3 | simplr 767 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ∈ 𝐵) | |
4 | simpr 483 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋) | |
5 | cvrne.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | cvrne.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
7 | 5, 6 | cvrne 38793 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
8 | 2, 3, 3, 4, 7 | syl31anc 1370 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
9 | 8 | ex 411 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶𝑋 → 𝑋 ≠ 𝑋)) |
10 | 9 | necon2bd 2953 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 class class class wbr 5152 ‘cfv 6553 Basecbs 17189 ⋖ ccvr 38774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-plt 18331 df-covers 38778 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |