![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnrefN | Structured version Visualization version GIF version |
Description: The covers relation is not reflexive. (cvnref 31275 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvrne.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrne.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrnrefN | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ 𝑋 = 𝑋 | |
2 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝐾 ∈ 𝐴) | |
3 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ∈ 𝐵) | |
4 | simpr 486 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋) | |
5 | cvrne.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | cvrne.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
7 | 5, 6 | cvrne 37789 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
8 | 2, 3, 3, 4, 7 | syl31anc 1374 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
9 | 8 | ex 414 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶𝑋 → 𝑋 ≠ 𝑋)) |
10 | 9 | necon2bd 2956 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 class class class wbr 5106 ‘cfv 6497 Basecbs 17088 ⋖ ccvr 37770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fun 6499 df-fv 6505 df-plt 18224 df-covers 37774 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |