![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnrefN | Structured version Visualization version GIF version |
Description: The covers relation is not reflexive. (cvnref 32053 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvrne.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrne.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrnrefN | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . 2 ⊢ 𝑋 = 𝑋 | |
2 | simpll 764 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝐾 ∈ 𝐴) | |
3 | simplr 766 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ∈ 𝐵) | |
4 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋) | |
5 | cvrne.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | cvrne.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
7 | 5, 6 | cvrne 38664 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
8 | 2, 3, 3, 4, 7 | syl31anc 1370 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
9 | 8 | ex 412 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶𝑋 → 𝑋 ≠ 𝑋)) |
10 | 9 | necon2bd 2950 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 class class class wbr 5141 ‘cfv 6537 Basecbs 17153 ⋖ ccvr 38645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-plt 18295 df-covers 38649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |