![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrnrefN | Structured version Visualization version GIF version |
Description: The covers relation is not reflexive. (cvnref 32336 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvrne.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrne.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrnrefN | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ 𝑋 = 𝑋 | |
2 | simpll 767 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝐾 ∈ 𝐴) | |
3 | simplr 769 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ∈ 𝐵) | |
4 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋) | |
5 | cvrne.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | cvrne.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
7 | 5, 6 | cvrne 39277 | . . . . 5 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
8 | 2, 3, 3, 4, 7 | syl31anc 1374 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋𝐶𝑋) → 𝑋 ≠ 𝑋) |
9 | 8 | ex 412 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋𝐶𝑋 → 𝑋 ≠ 𝑋)) |
10 | 9 | necon2bd 2956 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋)) |
11 | 1, 10 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 ⋖ ccvr 39258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-plt 18397 df-covers 39262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |