Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnrefN Structured version   Visualization version   GIF version

Theorem cvrnrefN 39278
Description: The covers relation is not reflexive. (cvnref 32336 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrne.b 𝐵 = (Base‘𝐾)
cvrne.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnrefN ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)

Proof of Theorem cvrnrefN
StepHypRef Expression
1 eqid 2737 . 2 𝑋 = 𝑋
2 simpll 767 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝐾𝐴)
3 simplr 769 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐵)
4 simpr 484 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋)
5 cvrne.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrne.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 39277 . . . . 5 (((𝐾𝐴𝑋𝐵𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
82, 3, 3, 4, 7syl31anc 1374 . . . 4 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
98ex 412 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋𝐶𝑋𝑋𝑋))
109necon2bd 2956 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋))
111, 10mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2940   class class class wbr 5151  cfv 6569  Basecbs 17254  ccvr 39258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-plt 18397  df-covers 39262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator