Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnrefN Structured version   Visualization version   GIF version

Theorem cvrnrefN 38665
Description: The covers relation is not reflexive. (cvnref 32053 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrne.b 𝐵 = (Base‘𝐾)
cvrne.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnrefN ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)

Proof of Theorem cvrnrefN
StepHypRef Expression
1 eqid 2726 . 2 𝑋 = 𝑋
2 simpll 764 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝐾𝐴)
3 simplr 766 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐵)
4 simpr 484 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋)
5 cvrne.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrne.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 38664 . . . . 5 (((𝐾𝐴𝑋𝐵𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
82, 3, 3, 4, 7syl31anc 1370 . . . 4 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
98ex 412 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋𝐶𝑋𝑋𝑋))
109necon2bd 2950 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋))
111, 10mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934   class class class wbr 5141  cfv 6537  Basecbs 17153  ccvr 38645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545  df-plt 18295  df-covers 38649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator