Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnrefN Structured version   Visualization version   GIF version

Theorem cvrnrefN 39240
Description: The covers relation is not reflexive. (cvnref 32325 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvrne.b 𝐵 = (Base‘𝐾)
cvrne.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnrefN ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)

Proof of Theorem cvrnrefN
StepHypRef Expression
1 eqid 2740 . 2 𝑋 = 𝑋
2 simpll 766 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝐾𝐴)
3 simplr 768 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐵)
4 simpr 484 . . . . 5 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝐶𝑋)
5 cvrne.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrne.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 39239 . . . . 5 (((𝐾𝐴𝑋𝐵𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
82, 3, 3, 4, 7syl31anc 1373 . . . 4 (((𝐾𝐴𝑋𝐵) ∧ 𝑋𝐶𝑋) → 𝑋𝑋)
98ex 412 . . 3 ((𝐾𝐴𝑋𝐵) → (𝑋𝐶𝑋𝑋𝑋))
109necon2bd 2962 . 2 ((𝐾𝐴𝑋𝐵) → (𝑋 = 𝑋 → ¬ 𝑋𝐶𝑋))
111, 10mpi 20 1 ((𝐾𝐴𝑋𝐵) → ¬ 𝑋𝐶𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6575  Basecbs 17260  ccvr 39220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-plt 18402  df-covers 39224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator