Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Structured version   Visualization version   GIF version

Theorem trlnidatb 40275
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 40271? Why do both this and ltrnideq 40273 need trlnidat 40271? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b 𝐵 = (Base‘𝐾)
trlnidatb.a 𝐴 = (Atoms‘𝐾)
trlnidatb.h 𝐻 = (LHyp‘𝐾)
trlnidatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnidatb.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnidatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))

Proof of Theorem trlnidatb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4 𝐵 = (Base‘𝐾)
2 trlnidatb.a . . . 4 𝐴 = (Atoms‘𝐾)
3 trlnidatb.h . . . 4 𝐻 = (LHyp‘𝐾)
4 trlnidatb.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 trlnidatb.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
61, 2, 3, 4, 5trlnidat 40271 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)
763expia 1121 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → (𝑅𝐹) ∈ 𝐴))
8 eqid 2731 . . . . . 6 (le‘𝐾) = (le‘𝐾)
98, 2, 3lhpexnle 40104 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
109adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
111, 8, 2, 3, 4ltrnideq 40273 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
12113expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
13 simp1l 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
16 simp3 1138 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
17 eqid 2731 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
188, 17, 2, 3, 4, 5trl0 40268 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = (0.‘𝐾))
1913, 14, 15, 16, 18syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = (0.‘𝐾))
20193expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = (0.‘𝐾)))
21 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
22 hlatl 39458 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2317, 2atn0 39406 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ (0.‘𝐾))
2423ex 412 . . . . . . . 8 (𝐾 ∈ AtLat → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2521, 22, 243syl 18 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2625necon2bd 2944 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) = (0.‘𝐾) → ¬ (𝑅𝐹) ∈ 𝐴))
2720, 26syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → ¬ (𝑅𝐹) ∈ 𝐴))
2812, 27sylbid 240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
2910, 28rexlimddv 3139 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
3029necon2ad 2943 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴𝐹 ≠ ( I ↾ 𝐵)))
317, 30impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5089   I cid 5508  cres 5616  cfv 6481  Basecbs 17120  lecple 17168  0.cp0 18327  Atomscatm 39361  AtLatcal 39362  HLchlt 39448  LHypclh 40082  LTrncltrn 40199  trLctrl 40256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257
This theorem is referenced by:  trlid0b  40276  cdlemfnid  40662  trlconid  40823  dih1dimb2  41339
  Copyright terms: Public domain W3C validator