Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Structured version   Visualization version   GIF version

Theorem trlnidatb 39134
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 39130? Why do both this and ltrnideq 39132 need trlnidat 39130? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b 𝐡 = (Baseβ€˜πΎ)
trlnidatb.a 𝐴 = (Atomsβ€˜πΎ)
trlnidatb.h 𝐻 = (LHypβ€˜πΎ)
trlnidatb.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlnidatb.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlnidatb (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) ↔ (π‘…β€˜πΉ) ∈ 𝐴))

Proof of Theorem trlnidatb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 trlnidatb.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
3 trlnidatb.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 trlnidatb.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 trlnidatb.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5trlnidat 39130 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
763expia 1121 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) β†’ (π‘…β€˜πΉ) ∈ 𝐴))
8 eqid 2732 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
98, 2, 3lhpexnle 38963 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝(leβ€˜πΎ)π‘Š)
109adantr 481 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝(leβ€˜πΎ)π‘Š)
111, 8, 2, 3, 4ltrnideq 39132 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) ↔ (πΉβ€˜π‘) = 𝑝))
12113expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) ↔ (πΉβ€˜π‘) = 𝑝))
13 simp1l 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (πΉβ€˜π‘) = 𝑝) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (πΉβ€˜π‘) = 𝑝) β†’ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š))
15 simp1r 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (πΉβ€˜π‘) = 𝑝) β†’ 𝐹 ∈ 𝑇)
16 simp3 1138 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (πΉβ€˜π‘) = 𝑝) β†’ (πΉβ€˜π‘) = 𝑝)
17 eqid 2732 . . . . . . . . 9 (0.β€˜πΎ) = (0.β€˜πΎ)
188, 17, 2, 3, 4, 5trl0 39127 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘) = 𝑝)) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
1913, 14, 15, 16, 18syl112anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (πΉβ€˜π‘) = 𝑝) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
20193expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘) = 𝑝 β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ)))
21 simplll 773 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ 𝐾 ∈ HL)
22 hlatl 38316 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
2317, 2atn0 38264 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (π‘…β€˜πΉ) ∈ 𝐴) β†’ (π‘…β€˜πΉ) β‰  (0.β€˜πΎ))
2423ex 413 . . . . . . . 8 (𝐾 ∈ AtLat β†’ ((π‘…β€˜πΉ) ∈ 𝐴 β†’ (π‘…β€˜πΉ) β‰  (0.β€˜πΎ)))
2521, 22, 243syl 18 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((π‘…β€˜πΉ) ∈ 𝐴 β†’ (π‘…β€˜πΉ) β‰  (0.β€˜πΎ)))
2625necon2bd 2956 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((π‘…β€˜πΉ) = (0.β€˜πΎ) β†’ Β¬ (π‘…β€˜πΉ) ∈ 𝐴))
2720, 26syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ ((πΉβ€˜π‘) = 𝑝 β†’ Β¬ (π‘…β€˜πΉ) ∈ 𝐴))
2812, 27sylbid 239 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) β†’ Β¬ (π‘…β€˜πΉ) ∈ 𝐴))
2910, 28rexlimddv 3161 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (𝐹 = ( I β†Ύ 𝐡) β†’ Β¬ (π‘…β€˜πΉ) ∈ 𝐴))
3029necon2ad 2955 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((π‘…β€˜πΉ) ∈ 𝐴 β†’ 𝐹 β‰  ( I β†Ύ 𝐡)))
317, 30impbid 211 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) ↔ (π‘…β€˜πΉ) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5148   I cid 5573   β†Ύ cres 5678  β€˜cfv 6543  Basecbs 17146  lecple 17206  0.cp0 18378  Atomscatm 38219  AtLatcal 38220  HLchlt 38306  LHypclh 38941  LTrncltrn 39058  trLctrl 39115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-oposet 38132  df-ol 38134  df-oml 38135  df-covers 38222  df-ats 38223  df-atl 38254  df-cvlat 38278  df-hlat 38307  df-lhyp 38945  df-laut 38946  df-ldil 39061  df-ltrn 39062  df-trl 39116
This theorem is referenced by:  trlid0b  39135  cdlemfnid  39521  trlconid  39682  dih1dimb2  40198
  Copyright terms: Public domain W3C validator