Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Structured version   Visualization version   GIF version

Theorem trlnidatb 40120
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 40116? Why do both this and ltrnideq 40118 need trlnidat 40116? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b 𝐵 = (Base‘𝐾)
trlnidatb.a 𝐴 = (Atoms‘𝐾)
trlnidatb.h 𝐻 = (LHyp‘𝐾)
trlnidatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnidatb.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnidatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))

Proof of Theorem trlnidatb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4 𝐵 = (Base‘𝐾)
2 trlnidatb.a . . . 4 𝐴 = (Atoms‘𝐾)
3 trlnidatb.h . . . 4 𝐻 = (LHyp‘𝐾)
4 trlnidatb.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 trlnidatb.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
61, 2, 3, 4, 5trlnidat 40116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)
763expia 1121 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → (𝑅𝐹) ∈ 𝐴))
8 eqid 2734 . . . . . 6 (le‘𝐾) = (le‘𝐾)
98, 2, 3lhpexnle 39949 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
109adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
111, 8, 2, 3, 4ltrnideq 40118 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
12113expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
13 simp1l 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp1r 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
16 simp3 1138 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
17 eqid 2734 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
188, 17, 2, 3, 4, 5trl0 40113 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = (0.‘𝐾))
1913, 14, 15, 16, 18syl112anc 1375 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = (0.‘𝐾))
20193expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = (0.‘𝐾)))
21 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
22 hlatl 39302 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2317, 2atn0 39250 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ (0.‘𝐾))
2423ex 412 . . . . . . . 8 (𝐾 ∈ AtLat → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2521, 22, 243syl 18 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2625necon2bd 2947 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) = (0.‘𝐾) → ¬ (𝑅𝐹) ∈ 𝐴))
2720, 26syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → ¬ (𝑅𝐹) ∈ 𝐴))
2812, 27sylbid 240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
2910, 28rexlimddv 3148 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
3029necon2ad 2946 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴𝐹 ≠ ( I ↾ 𝐵)))
317, 30impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059   class class class wbr 5125   I cid 5559  cres 5669  cfv 6542  Basecbs 17230  lecple 17284  0.cp0 18442  Atomscatm 39205  AtLatcal 39206  HLchlt 39292  LHypclh 39927  LTrncltrn 40044  trLctrl 40101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8851  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-lhyp 39931  df-laut 39932  df-ldil 40047  df-ltrn 40048  df-trl 40102
This theorem is referenced by:  trlid0b  40121  cdlemfnid  40507  trlconid  40668  dih1dimb2  41184
  Copyright terms: Public domain W3C validator