Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Structured version   Visualization version   GIF version

Theorem trlnidatb 38191
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 38187? Why do both this and ltrnideq 38189 need trlnidat 38187? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b 𝐵 = (Base‘𝐾)
trlnidatb.a 𝐴 = (Atoms‘𝐾)
trlnidatb.h 𝐻 = (LHyp‘𝐾)
trlnidatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnidatb.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnidatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))

Proof of Theorem trlnidatb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4 𝐵 = (Base‘𝐾)
2 trlnidatb.a . . . 4 𝐴 = (Atoms‘𝐾)
3 trlnidatb.h . . . 4 𝐻 = (LHyp‘𝐾)
4 trlnidatb.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 trlnidatb.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
61, 2, 3, 4, 5trlnidat 38187 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)
763expia 1120 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → (𝑅𝐹) ∈ 𝐴))
8 eqid 2738 . . . . . 6 (le‘𝐾) = (le‘𝐾)
98, 2, 3lhpexnle 38020 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
109adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
111, 8, 2, 3, 4ltrnideq 38189 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
12113expa 1117 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
13 simp1l 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp2 1136 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp1r 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
16 simp3 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
17 eqid 2738 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
188, 17, 2, 3, 4, 5trl0 38184 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = (0.‘𝐾))
1913, 14, 15, 16, 18syl112anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = (0.‘𝐾))
20193expia 1120 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = (0.‘𝐾)))
21 simplll 772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
22 hlatl 37374 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2317, 2atn0 37322 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ (0.‘𝐾))
2423ex 413 . . . . . . . 8 (𝐾 ∈ AtLat → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2521, 22, 243syl 18 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2625necon2bd 2959 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) = (0.‘𝐾) → ¬ (𝑅𝐹) ∈ 𝐴))
2720, 26syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → ¬ (𝑅𝐹) ∈ 𝐴))
2812, 27sylbid 239 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
2910, 28rexlimddv 3220 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
3029necon2ad 2958 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴𝐹 ≠ ( I ↾ 𝐵)))
317, 30impbid 211 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074   I cid 5488  cres 5591  cfv 6433  Basecbs 16912  lecple 16969  0.cp0 18141  Atomscatm 37277  AtLatcal 37278  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  trlid0b  38192  cdlemfnid  38578  trlconid  38739  dih1dimb2  39255
  Copyright terms: Public domain W3C validator