Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Structured version   Visualization version   GIF version

Theorem trlnidatb 40164
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 40160? Why do both this and ltrnideq 40162 need trlnidat 40160? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b 𝐵 = (Base‘𝐾)
trlnidatb.a 𝐴 = (Atoms‘𝐾)
trlnidatb.h 𝐻 = (LHyp‘𝐾)
trlnidatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlnidatb.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlnidatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))

Proof of Theorem trlnidatb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4 𝐵 = (Base‘𝐾)
2 trlnidatb.a . . . 4 𝐴 = (Atoms‘𝐾)
3 trlnidatb.h . . . 4 𝐻 = (LHyp‘𝐾)
4 trlnidatb.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 trlnidatb.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
61, 2, 3, 4, 5trlnidat 40160 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → (𝑅𝐹) ∈ 𝐴)
763expia 1121 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) → (𝑅𝐹) ∈ 𝐴))
8 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
98, 2, 3lhpexnle 39993 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
109adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
111, 8, 2, 3, 4ltrnideq 40162 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
12113expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑝) = 𝑝))
13 simp1l 1198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp1r 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
16 simp3 1138 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
17 eqid 2729 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
188, 17, 2, 3, 4, 5trl0 40157 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = (0.‘𝐾))
1913, 14, 15, 16, 18syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = (0.‘𝐾))
20193expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = (0.‘𝐾)))
21 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
22 hlatl 39346 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2317, 2atn0 39294 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ (𝑅𝐹) ∈ 𝐴) → (𝑅𝐹) ≠ (0.‘𝐾))
2423ex 412 . . . . . . . 8 (𝐾 ∈ AtLat → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2521, 22, 243syl 18 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ≠ (0.‘𝐾)))
2625necon2bd 2941 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) = (0.‘𝐾) → ¬ (𝑅𝐹) ∈ 𝐴))
2720, 26syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → ¬ (𝑅𝐹) ∈ 𝐴))
2812, 27sylbid 240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
2910, 28rexlimddv 3140 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ¬ (𝑅𝐹) ∈ 𝐴))
3029necon2ad 2940 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴𝐹 ≠ ( I ↾ 𝐵)))
317, 30impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 ≠ ( I ↾ 𝐵) ↔ (𝑅𝐹) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102   I cid 5525  cres 5633  cfv 6499  Basecbs 17155  lecple 17203  0.cp0 18362  Atomscatm 39249  AtLatcal 39250  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  trLctrl 40145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146
This theorem is referenced by:  trlid0b  40165  cdlemfnid  40551  trlconid  40712  dih1dimb2  41228
  Copyright terms: Public domain W3C validator