HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  staddi Structured version   Visualization version   GIF version

Theorem staddi 29719
Description: If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
Assertion
Ref Expression
staddi (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))

Proof of Theorem staddi
StepHypRef Expression
1 stle.1 . . . . . . 7 𝐴C
2 stcl 29689 . . . . . . 7 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
4 stle.2 . . . . . . 7 𝐵C
5 stcl 29689 . . . . . . 7 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
64, 5mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
73, 6readdcld 10521 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ)
8 ltne 10589 . . . . . 6 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → 2 ≠ ((𝑆𝐴) + (𝑆𝐵)))
98necomd 3039 . . . . 5 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
107, 9sylan 580 . . . 4 ((𝑆 ∈ States ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
1110ex 413 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) < 2 → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2))
1211necon2bd 3000 . 2 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → ¬ ((𝑆𝐴) + (𝑆𝐵)) < 2))
13 1re 10492 . . . . . . . . 9 1 ∈ ℝ
1413a1i 11 . . . . . . . 8 (𝑆 ∈ States → 1 ∈ ℝ)
15 stle1 29698 . . . . . . . . 9 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
164, 15mpi 20 . . . . . . . 8 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
176, 14, 3, 16leadd2dd 11108 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
1817adantr 481 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
19 ltadd1 10960 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + 1) < (1 + 1)))
2019biimpd 230 . . . . . . . 8 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
213, 14, 14, 20syl3anc 1364 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
2221imp 407 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + 1) < (1 + 1))
23 readdcl 10471 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) + 1) ∈ ℝ)
243, 13, 23sylancl 586 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + 1) ∈ ℝ)
2513, 13readdcli 10507 . . . . . . . . 9 (1 + 1) ∈ ℝ
2625a1i 11 . . . . . . . 8 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
27 lelttr 10583 . . . . . . . 8 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + 1) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
287, 24, 26, 27syl3anc 1364 . . . . . . 7 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
2928adantr 481 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
3018, 22, 29mp2and 695 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1))
31 df-2 11553 . . . . 5 2 = (1 + 1)
3230, 31syl6breqr 5008 . . . 4 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < 2)
3332ex 413 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (𝑆𝐵)) < 2))
3433con3d 155 . 2 (𝑆 ∈ States → (¬ ((𝑆𝐴) + (𝑆𝐵)) < 2 → ¬ (𝑆𝐴) < 1))
35 stle1 29698 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
361, 35mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
37 leloe 10579 . . . . 5 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
383, 13, 37sylancl 586 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
3936, 38mpbid 233 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
4039ord 859 . 2 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
4112, 34, 403syld 60 1 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4966  cfv 6230  (class class class)co 7021  cr 10387  1c1 10389   + caddc 10391   < clt 10526  cle 10527  2c2 11545   C cch 28402  Statescst 28435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-hilex 28472
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-po 5367  df-so 5368  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-er 8144  df-map 8263  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-2 11553  df-icc 12600  df-sh 28680  df-ch 28694  df-st 29684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator