Proof of Theorem staddi
Step | Hyp | Ref
| Expression |
1 | | stle.1 |
. . . . . . 7
⊢ 𝐴 ∈
Cℋ |
2 | | stcl 30297 |
. . . . . . 7
⊢ (𝑆 ∈ States → (𝐴 ∈
Cℋ → (𝑆‘𝐴) ∈ ℝ)) |
3 | 1, 2 | mpi 20 |
. . . . . 6
⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
4 | | stle.2 |
. . . . . . 7
⊢ 𝐵 ∈
Cℋ |
5 | | stcl 30297 |
. . . . . . 7
⊢ (𝑆 ∈ States → (𝐵 ∈
Cℋ → (𝑆‘𝐵) ∈ ℝ)) |
6 | 4, 5 | mpi 20 |
. . . . . 6
⊢ (𝑆 ∈ States → (𝑆‘𝐵) ∈ ℝ) |
7 | 3, 6 | readdcld 10862 |
. . . . 5
⊢ (𝑆 ∈ States → ((𝑆‘𝐴) + (𝑆‘𝐵)) ∈ ℝ) |
8 | | ltne 10929 |
. . . . . 6
⊢ ((((𝑆‘𝐴) + (𝑆‘𝐵)) ∈ ℝ ∧ ((𝑆‘𝐴) + (𝑆‘𝐵)) < 2) → 2 ≠ ((𝑆‘𝐴) + (𝑆‘𝐵))) |
9 | 8 | necomd 2996 |
. . . . 5
⊢ ((((𝑆‘𝐴) + (𝑆‘𝐵)) ∈ ℝ ∧ ((𝑆‘𝐴) + (𝑆‘𝐵)) < 2) → ((𝑆‘𝐴) + (𝑆‘𝐵)) ≠ 2) |
10 | 7, 9 | sylan 583 |
. . . 4
⊢ ((𝑆 ∈ States ∧ ((𝑆‘𝐴) + (𝑆‘𝐵)) < 2) → ((𝑆‘𝐴) + (𝑆‘𝐵)) ≠ 2) |
11 | 10 | ex 416 |
. . 3
⊢ (𝑆 ∈ States → (((𝑆‘𝐴) + (𝑆‘𝐵)) < 2 → ((𝑆‘𝐴) + (𝑆‘𝐵)) ≠ 2)) |
12 | 11 | necon2bd 2956 |
. 2
⊢ (𝑆 ∈ States → (((𝑆‘𝐴) + (𝑆‘𝐵)) = 2 → ¬ ((𝑆‘𝐴) + (𝑆‘𝐵)) < 2)) |
13 | | 1re 10833 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ (𝑆 ∈ States → 1 ∈
ℝ) |
15 | | stle1 30306 |
. . . . . . . . 9
⊢ (𝑆 ∈ States → (𝐵 ∈
Cℋ → (𝑆‘𝐵) ≤ 1)) |
16 | 4, 15 | mpi 20 |
. . . . . . . 8
⊢ (𝑆 ∈ States → (𝑆‘𝐵) ≤ 1) |
17 | 6, 14, 3, 16 | leadd2dd 11447 |
. . . . . . 7
⊢ (𝑆 ∈ States → ((𝑆‘𝐴) + (𝑆‘𝐵)) ≤ ((𝑆‘𝐴) + 1)) |
18 | 17 | adantr 484 |
. . . . . 6
⊢ ((𝑆 ∈ States ∧ (𝑆‘𝐴) < 1) → ((𝑆‘𝐴) + (𝑆‘𝐵)) ≤ ((𝑆‘𝐴) + 1)) |
19 | | ltadd1 11299 |
. . . . . . . . 9
⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ
∧ 1 ∈ ℝ) → ((𝑆‘𝐴) < 1 ↔ ((𝑆‘𝐴) + 1) < (1 + 1))) |
20 | 19 | biimpd 232 |
. . . . . . . 8
⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ
∧ 1 ∈ ℝ) → ((𝑆‘𝐴) < 1 → ((𝑆‘𝐴) + 1) < (1 + 1))) |
21 | 3, 14, 14, 20 | syl3anc 1373 |
. . . . . . 7
⊢ (𝑆 ∈ States → ((𝑆‘𝐴) < 1 → ((𝑆‘𝐴) + 1) < (1 + 1))) |
22 | 21 | imp 410 |
. . . . . 6
⊢ ((𝑆 ∈ States ∧ (𝑆‘𝐴) < 1) → ((𝑆‘𝐴) + 1) < (1 + 1)) |
23 | | readdcl 10812 |
. . . . . . . . 9
⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((𝑆‘𝐴) + 1) ∈
ℝ) |
24 | 3, 13, 23 | sylancl 589 |
. . . . . . . 8
⊢ (𝑆 ∈ States → ((𝑆‘𝐴) + 1) ∈ ℝ) |
25 | 13, 13 | readdcli 10848 |
. . . . . . . . 9
⊢ (1 + 1)
∈ ℝ |
26 | 25 | a1i 11 |
. . . . . . . 8
⊢ (𝑆 ∈ States → (1 + 1)
∈ ℝ) |
27 | | lelttr 10923 |
. . . . . . . 8
⊢ ((((𝑆‘𝐴) + (𝑆‘𝐵)) ∈ ℝ ∧ ((𝑆‘𝐴) + 1) ∈ ℝ ∧ (1 + 1) ∈
ℝ) → ((((𝑆‘𝐴) + (𝑆‘𝐵)) ≤ ((𝑆‘𝐴) + 1) ∧ ((𝑆‘𝐴) + 1) < (1 + 1)) → ((𝑆‘𝐴) + (𝑆‘𝐵)) < (1 + 1))) |
28 | 7, 24, 26, 27 | syl3anc 1373 |
. . . . . . 7
⊢ (𝑆 ∈ States → ((((𝑆‘𝐴) + (𝑆‘𝐵)) ≤ ((𝑆‘𝐴) + 1) ∧ ((𝑆‘𝐴) + 1) < (1 + 1)) → ((𝑆‘𝐴) + (𝑆‘𝐵)) < (1 + 1))) |
29 | 28 | adantr 484 |
. . . . . 6
⊢ ((𝑆 ∈ States ∧ (𝑆‘𝐴) < 1) → ((((𝑆‘𝐴) + (𝑆‘𝐵)) ≤ ((𝑆‘𝐴) + 1) ∧ ((𝑆‘𝐴) + 1) < (1 + 1)) → ((𝑆‘𝐴) + (𝑆‘𝐵)) < (1 + 1))) |
30 | 18, 22, 29 | mp2and 699 |
. . . . 5
⊢ ((𝑆 ∈ States ∧ (𝑆‘𝐴) < 1) → ((𝑆‘𝐴) + (𝑆‘𝐵)) < (1 + 1)) |
31 | | df-2 11893 |
. . . . 5
⊢ 2 = (1 +
1) |
32 | 30, 31 | breqtrrdi 5095 |
. . . 4
⊢ ((𝑆 ∈ States ∧ (𝑆‘𝐴) < 1) → ((𝑆‘𝐴) + (𝑆‘𝐵)) < 2) |
33 | 32 | ex 416 |
. . 3
⊢ (𝑆 ∈ States → ((𝑆‘𝐴) < 1 → ((𝑆‘𝐴) + (𝑆‘𝐵)) < 2)) |
34 | 33 | con3d 155 |
. 2
⊢ (𝑆 ∈ States → (¬
((𝑆‘𝐴) + (𝑆‘𝐵)) < 2 → ¬ (𝑆‘𝐴) < 1)) |
35 | | stle1 30306 |
. . . . 5
⊢ (𝑆 ∈ States → (𝐴 ∈
Cℋ → (𝑆‘𝐴) ≤ 1)) |
36 | 1, 35 | mpi 20 |
. . . 4
⊢ (𝑆 ∈ States → (𝑆‘𝐴) ≤ 1) |
37 | | leloe 10919 |
. . . . 5
⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((𝑆‘𝐴) ≤ 1 ↔ ((𝑆‘𝐴) < 1 ∨ (𝑆‘𝐴) = 1))) |
38 | 3, 13, 37 | sylancl 589 |
. . . 4
⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 1 ↔ ((𝑆‘𝐴) < 1 ∨ (𝑆‘𝐴) = 1))) |
39 | 36, 38 | mpbid 235 |
. . 3
⊢ (𝑆 ∈ States → ((𝑆‘𝐴) < 1 ∨ (𝑆‘𝐴) = 1)) |
40 | 39 | ord 864 |
. 2
⊢ (𝑆 ∈ States → (¬
(𝑆‘𝐴) < 1 → (𝑆‘𝐴) = 1)) |
41 | 12, 34, 40 | 3syld 60 |
1
⊢ (𝑆 ∈ States → (((𝑆‘𝐴) + (𝑆‘𝐵)) = 2 → (𝑆‘𝐴) = 1)) |