HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  staddi Structured version   Visualization version   GIF version

Theorem staddi 30653
Description: If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
Assertion
Ref Expression
staddi (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))

Proof of Theorem staddi
StepHypRef Expression
1 stle.1 . . . . . . 7 𝐴C
2 stcl 30623 . . . . . . 7 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
4 stle.2 . . . . . . 7 𝐵C
5 stcl 30623 . . . . . . 7 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
64, 5mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
73, 6readdcld 11050 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ)
8 ltne 11118 . . . . . 6 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → 2 ≠ ((𝑆𝐴) + (𝑆𝐵)))
98necomd 2997 . . . . 5 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
107, 9sylan 581 . . . 4 ((𝑆 ∈ States ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
1110ex 414 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) < 2 → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2))
1211necon2bd 2957 . 2 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → ¬ ((𝑆𝐴) + (𝑆𝐵)) < 2))
13 1re 11021 . . . . . . . . 9 1 ∈ ℝ
1413a1i 11 . . . . . . . 8 (𝑆 ∈ States → 1 ∈ ℝ)
15 stle1 30632 . . . . . . . . 9 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
164, 15mpi 20 . . . . . . . 8 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
176, 14, 3, 16leadd2dd 11636 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
1817adantr 482 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
19 ltadd1 11488 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + 1) < (1 + 1)))
2019biimpd 228 . . . . . . . 8 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
213, 14, 14, 20syl3anc 1371 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
2221imp 408 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + 1) < (1 + 1))
23 readdcl 11000 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) + 1) ∈ ℝ)
243, 13, 23sylancl 587 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + 1) ∈ ℝ)
2513, 13readdcli 11036 . . . . . . . . 9 (1 + 1) ∈ ℝ
2625a1i 11 . . . . . . . 8 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
27 lelttr 11111 . . . . . . . 8 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + 1) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
287, 24, 26, 27syl3anc 1371 . . . . . . 7 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
2928adantr 482 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
3018, 22, 29mp2and 697 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1))
31 df-2 12082 . . . . 5 2 = (1 + 1)
3230, 31breqtrrdi 5123 . . . 4 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < 2)
3332ex 414 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (𝑆𝐵)) < 2))
3433con3d 152 . 2 (𝑆 ∈ States → (¬ ((𝑆𝐴) + (𝑆𝐵)) < 2 → ¬ (𝑆𝐴) < 1))
35 stle1 30632 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
361, 35mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
37 leloe 11107 . . . . 5 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
383, 13, 37sylancl 587 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
3936, 38mpbid 231 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
4039ord 862 . 2 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
4112, 34, 403syld 60 1 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wne 2941   class class class wbr 5081  cfv 6458  (class class class)co 7307  cr 10916  1c1 10918   + caddc 10920   < clt 11055  cle 11056  2c2 12074   C cch 29336  Statescst 29369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-hilex 29406
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-2 12082  df-icc 13132  df-sh 29614  df-ch 29628  df-st 30618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator