HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  staddi Structured version   Visualization version   GIF version

Theorem staddi 30025
Description: If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
Assertion
Ref Expression
staddi (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))

Proof of Theorem staddi
StepHypRef Expression
1 stle.1 . . . . . . 7 𝐴C
2 stcl 29995 . . . . . . 7 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
4 stle.2 . . . . . . 7 𝐵C
5 stcl 29995 . . . . . . 7 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
64, 5mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
73, 6readdcld 10672 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ)
8 ltne 10739 . . . . . 6 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → 2 ≠ ((𝑆𝐴) + (𝑆𝐵)))
98necomd 3073 . . . . 5 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
107, 9sylan 582 . . . 4 ((𝑆 ∈ States ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
1110ex 415 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) < 2 → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2))
1211necon2bd 3034 . 2 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → ¬ ((𝑆𝐴) + (𝑆𝐵)) < 2))
13 1re 10643 . . . . . . . . 9 1 ∈ ℝ
1413a1i 11 . . . . . . . 8 (𝑆 ∈ States → 1 ∈ ℝ)
15 stle1 30004 . . . . . . . . 9 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
164, 15mpi 20 . . . . . . . 8 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
176, 14, 3, 16leadd2dd 11257 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
1817adantr 483 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
19 ltadd1 11109 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + 1) < (1 + 1)))
2019biimpd 231 . . . . . . . 8 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
213, 14, 14, 20syl3anc 1367 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
2221imp 409 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + 1) < (1 + 1))
23 readdcl 10622 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) + 1) ∈ ℝ)
243, 13, 23sylancl 588 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + 1) ∈ ℝ)
2513, 13readdcli 10658 . . . . . . . . 9 (1 + 1) ∈ ℝ
2625a1i 11 . . . . . . . 8 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
27 lelttr 10733 . . . . . . . 8 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + 1) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
287, 24, 26, 27syl3anc 1367 . . . . . . 7 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
2928adantr 483 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
3018, 22, 29mp2and 697 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1))
31 df-2 11703 . . . . 5 2 = (1 + 1)
3230, 31breqtrrdi 5110 . . . 4 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < 2)
3332ex 415 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (𝑆𝐵)) < 2))
3433con3d 155 . 2 (𝑆 ∈ States → (¬ ((𝑆𝐴) + (𝑆𝐵)) < 2 → ¬ (𝑆𝐴) < 1))
35 stle1 30004 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
361, 35mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
37 leloe 10729 . . . . 5 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
383, 13, 37sylancl 588 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
3936, 38mpbid 234 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
4039ord 860 . 2 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
4112, 34, 403syld 60 1 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542   < clt 10677  cle 10678  2c2 11695   C cch 28708  Statescst 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-hilex 28778
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-2 11703  df-icc 12748  df-sh 28986  df-ch 29000  df-st 29990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator