HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  staddi Structured version   Visualization version   GIF version

Theorem staddi 29455
Description: If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stle.1 𝐴C
stle.2 𝐵C
Assertion
Ref Expression
staddi (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))

Proof of Theorem staddi
StepHypRef Expression
1 stle.1 . . . . . . 7 𝐴C
2 stcl 29425 . . . . . . 7 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
31, 2mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐴) ∈ ℝ)
4 stle.2 . . . . . . 7 𝐵C
5 stcl 29425 . . . . . . 7 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ∈ ℝ))
64, 5mpi 20 . . . . . 6 (𝑆 ∈ States → (𝑆𝐵) ∈ ℝ)
73, 6readdcld 10363 . . . . 5 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ)
8 ltne 10428 . . . . . 6 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → 2 ≠ ((𝑆𝐴) + (𝑆𝐵)))
98necomd 3044 . . . . 5 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
107, 9sylan 571 . . . 4 ((𝑆 ∈ States ∧ ((𝑆𝐴) + (𝑆𝐵)) < 2) → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2)
1110ex 399 . . 3 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) < 2 → ((𝑆𝐴) + (𝑆𝐵)) ≠ 2))
1211necon2bd 3005 . 2 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → ¬ ((𝑆𝐴) + (𝑆𝐵)) < 2))
13 1re 10334 . . . . . . . . 9 1 ∈ ℝ
1413a1i 11 . . . . . . . 8 (𝑆 ∈ States → 1 ∈ ℝ)
15 stle1 29434 . . . . . . . . 9 (𝑆 ∈ States → (𝐵C → (𝑆𝐵) ≤ 1))
164, 15mpi 20 . . . . . . . 8 (𝑆 ∈ States → (𝑆𝐵) ≤ 1)
176, 14, 3, 16leadd2dd 10936 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
1817adantr 468 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1))
19 ltadd1 10789 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 ↔ ((𝑆𝐴) + 1) < (1 + 1)))
2019biimpd 220 . . . . . . . 8 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
213, 14, 14, 20syl3anc 1483 . . . . . . 7 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + 1) < (1 + 1)))
2221imp 395 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + 1) < (1 + 1))
23 readdcl 10313 . . . . . . . . 9 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) + 1) ∈ ℝ)
243, 13, 23sylancl 576 . . . . . . . 8 (𝑆 ∈ States → ((𝑆𝐴) + 1) ∈ ℝ)
2513, 13readdcli 10349 . . . . . . . . 9 (1 + 1) ∈ ℝ
2625a1i 11 . . . . . . . 8 (𝑆 ∈ States → (1 + 1) ∈ ℝ)
27 lelttr 10422 . . . . . . . 8 ((((𝑆𝐴) + (𝑆𝐵)) ∈ ℝ ∧ ((𝑆𝐴) + 1) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
287, 24, 26, 27syl3anc 1483 . . . . . . 7 (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
2928adantr 468 . . . . . 6 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((((𝑆𝐴) + (𝑆𝐵)) ≤ ((𝑆𝐴) + 1) ∧ ((𝑆𝐴) + 1) < (1 + 1)) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1)))
3018, 22, 29mp2and 682 . . . . 5 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < (1 + 1))
31 df-2 11375 . . . . 5 2 = (1 + 1)
3230, 31syl6breqr 4897 . . . 4 ((𝑆 ∈ States ∧ (𝑆𝐴) < 1) → ((𝑆𝐴) + (𝑆𝐵)) < 2)
3332ex 399 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 → ((𝑆𝐴) + (𝑆𝐵)) < 2))
3433con3d 149 . 2 (𝑆 ∈ States → (¬ ((𝑆𝐴) + (𝑆𝐵)) < 2 → ¬ (𝑆𝐴) < 1))
35 stle1 29434 . . . . 5 (𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
361, 35mpi 20 . . . 4 (𝑆 ∈ States → (𝑆𝐴) ≤ 1)
37 leloe 10418 . . . . 5 (((𝑆𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
383, 13, 37sylancl 576 . . . 4 (𝑆 ∈ States → ((𝑆𝐴) ≤ 1 ↔ ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1)))
3936, 38mpbid 223 . . 3 (𝑆 ∈ States → ((𝑆𝐴) < 1 ∨ (𝑆𝐴) = 1))
4039ord 882 . 2 (𝑆 ∈ States → (¬ (𝑆𝐴) < 1 → (𝑆𝐴) = 1))
4112, 34, 403syld 60 1 (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2157  wne 2989   class class class wbr 4855  cfv 6110  (class class class)co 6883  cr 10229  1c1 10231   + caddc 10233   < clt 10368  cle 10369  2c2 11367   C cch 28136  Statescst 28169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-hilex 28206
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5232  df-po 5245  df-so 5246  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-er 7988  df-map 8103  df-en 8202  df-dom 8203  df-sdom 8204  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-2 11375  df-icc 12419  df-sh 28414  df-ch 28428  df-st 29420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator