| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnodpmr | Structured version Visualization version GIF version | ||
| Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
| psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnodpmr | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ 𝑃) | |
| 2 | evpmss.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 3 | evpmss.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝑆) | |
| 4 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 5 | 2, 3, 4 | psgnevpm 21528 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) |
| 6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) = 1)) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) = 1)) |
| 8 | neg1rr 12118 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
| 9 | neg1lt0 12120 | . . . . . . . 8 ⊢ -1 < 0 | |
| 10 | 0lt1 11646 | . . . . . . . 8 ⊢ 0 < 1 | |
| 11 | 0re 11121 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 12 | 1re 11119 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | 8, 11, 12 | lttri 11246 | . . . . . . . 8 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
| 14 | 9, 10, 13 | mp2an 692 | . . . . . . 7 ⊢ -1 < 1 |
| 15 | 8, 14 | gtneii 11232 | . . . . . 6 ⊢ 1 ≠ -1 |
| 16 | neeq1 2991 | . . . . . 6 ⊢ ((𝑁‘𝐹) = 1 → ((𝑁‘𝐹) ≠ -1 ↔ 1 ≠ -1)) | |
| 17 | 15, 16 | mpbiri 258 | . . . . 5 ⊢ ((𝑁‘𝐹) = 1 → (𝑁‘𝐹) ≠ -1) |
| 18 | 7, 17 | syl6 35 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) ≠ -1)) |
| 19 | 18 | necon2bd 2945 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = -1 → ¬ 𝐹 ∈ (pmEven‘𝐷))) |
| 20 | 19 | 3impia 1117 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → ¬ 𝐹 ∈ (pmEven‘𝐷)) |
| 21 | 1, 20 | eldifd 3909 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 class class class wbr 5093 ‘cfv 6486 Fincfn 8875 0cc0 11013 1c1 11014 < clt 11153 -cneg 11352 Basecbs 17122 SymGrpcsymg 19283 pmSgncpsgn 19403 pmEvencevpm 19404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-splice 14659 df-reverse 14668 df-s2 14757 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-efmnd 18779 df-grp 18851 df-minusg 18852 df-subg 19038 df-ghm 19127 df-gim 19173 df-oppg 19260 df-symg 19284 df-pmtr 19356 df-psgn 19405 df-evpm 19406 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-drng 20648 df-cnfld 21294 |
| This theorem is referenced by: evpmodpmf1o 21535 pmtrodpm 21536 mdetralt 22524 |
| Copyright terms: Public domain | W3C validator |