![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnodpmr | Structured version Visualization version GIF version |
Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | β’ π = (SymGrpβπ·) |
evpmss.p | β’ π = (Baseβπ) |
psgnevpmb.n | β’ π = (pmSgnβπ·) |
Ref | Expression |
---|---|
psgnodpmr | β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β πΉ β (π β (pmEvenβπ·))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . 2 β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β πΉ β π) | |
2 | evpmss.s | . . . . . . . 8 β’ π = (SymGrpβπ·) | |
3 | evpmss.p | . . . . . . . 8 β’ π = (Baseβπ) | |
4 | psgnevpmb.n | . . . . . . . 8 β’ π = (pmSgnβπ·) | |
5 | 2, 3, 4 | psgnevpm 21535 | . . . . . . 7 β’ ((π· β Fin β§ πΉ β (pmEvenβπ·)) β (πβπΉ) = 1) |
6 | 5 | ex 411 | . . . . . 6 β’ (π· β Fin β (πΉ β (pmEvenβπ·) β (πβπΉ) = 1)) |
7 | 6 | adantr 479 | . . . . 5 β’ ((π· β Fin β§ πΉ β π) β (πΉ β (pmEvenβπ·) β (πβπΉ) = 1)) |
8 | neg1rr 12367 | . . . . . . 7 β’ -1 β β | |
9 | neg1lt0 12369 | . . . . . . . 8 β’ -1 < 0 | |
10 | 0lt1 11776 | . . . . . . . 8 β’ 0 < 1 | |
11 | 0re 11256 | . . . . . . . . 9 β’ 0 β β | |
12 | 1re 11254 | . . . . . . . . 9 β’ 1 β β | |
13 | 8, 11, 12 | lttri 11380 | . . . . . . . 8 β’ ((-1 < 0 β§ 0 < 1) β -1 < 1) |
14 | 9, 10, 13 | mp2an 690 | . . . . . . 7 β’ -1 < 1 |
15 | 8, 14 | gtneii 11366 | . . . . . 6 β’ 1 β -1 |
16 | neeq1 3000 | . . . . . 6 β’ ((πβπΉ) = 1 β ((πβπΉ) β -1 β 1 β -1)) | |
17 | 15, 16 | mpbiri 257 | . . . . 5 β’ ((πβπΉ) = 1 β (πβπΉ) β -1) |
18 | 7, 17 | syl6 35 | . . . 4 β’ ((π· β Fin β§ πΉ β π) β (πΉ β (pmEvenβπ·) β (πβπΉ) β -1)) |
19 | 18 | necon2bd 2953 | . . 3 β’ ((π· β Fin β§ πΉ β π) β ((πβπΉ) = -1 β Β¬ πΉ β (pmEvenβπ·))) |
20 | 19 | 3impia 1114 | . 2 β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β Β¬ πΉ β (pmEvenβπ·)) |
21 | 1, 20 | eldifd 3960 | 1 β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β πΉ β (π β (pmEvenβπ·))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2937 β cdif 3946 class class class wbr 5152 βcfv 6553 Fincfn 8972 0cc0 11148 1c1 11149 < clt 11288 -cneg 11485 Basecbs 17189 SymGrpcsymg 19335 pmSgncpsgn 19458 pmEvencevpm 19459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-addf 11227 ax-mulf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-xnn0 12585 df-z 12599 df-dec 12718 df-uz 12863 df-rp 13017 df-fz 13527 df-fzo 13670 df-seq 14009 df-exp 14069 df-hash 14332 df-word 14507 df-lsw 14555 df-concat 14563 df-s1 14588 df-substr 14633 df-pfx 14663 df-splice 14742 df-reverse 14751 df-s2 14841 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-starv 17257 df-tset 17261 df-ple 17262 df-ds 17264 df-unif 17265 df-0g 17432 df-gsum 17433 df-mre 17575 df-mrc 17576 df-acs 17578 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-mhm 18749 df-submnd 18750 df-efmnd 18835 df-grp 18907 df-minusg 18908 df-subg 19092 df-ghm 19182 df-gim 19227 df-oppg 19311 df-symg 19336 df-pmtr 19411 df-psgn 19460 df-evpm 19461 df-cmn 19751 df-abl 19752 df-mgp 20089 df-rng 20107 df-ur 20136 df-ring 20189 df-cring 20190 df-oppr 20287 df-dvdsr 20310 df-unit 20311 df-invr 20341 df-dvr 20354 df-drng 20640 df-cnfld 21294 |
This theorem is referenced by: evpmodpmf1o 21542 pmtrodpm 21543 mdetralt 22538 |
Copyright terms: Public domain | W3C validator |