Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnodpmr | Structured version Visualization version GIF version |
Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnodpmr | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ 𝑃) | |
2 | evpmss.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
3 | evpmss.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝑆) | |
4 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
5 | 2, 3, 4 | psgnevpm 20904 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) |
6 | 5 | ex 414 | . . . . . 6 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) = 1)) |
7 | 6 | adantr 482 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) = 1)) |
8 | neg1rr 12198 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
9 | neg1lt0 12200 | . . . . . . . 8 ⊢ -1 < 0 | |
10 | 0lt1 11607 | . . . . . . . 8 ⊢ 0 < 1 | |
11 | 0re 11087 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
12 | 1re 11085 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
13 | 8, 11, 12 | lttri 11211 | . . . . . . . 8 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
14 | 9, 10, 13 | mp2an 690 | . . . . . . 7 ⊢ -1 < 1 |
15 | 8, 14 | gtneii 11197 | . . . . . 6 ⊢ 1 ≠ -1 |
16 | neeq1 3004 | . . . . . 6 ⊢ ((𝑁‘𝐹) = 1 → ((𝑁‘𝐹) ≠ -1 ↔ 1 ≠ -1)) | |
17 | 15, 16 | mpbiri 258 | . . . . 5 ⊢ ((𝑁‘𝐹) = 1 → (𝑁‘𝐹) ≠ -1) |
18 | 7, 17 | syl6 35 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) ≠ -1)) |
19 | 18 | necon2bd 2957 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = -1 → ¬ 𝐹 ∈ (pmEven‘𝐷))) |
20 | 19 | 3impia 1117 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → ¬ 𝐹 ∈ (pmEven‘𝐷)) |
21 | 1, 20 | eldifd 3916 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∖ cdif 3902 class class class wbr 5100 ‘cfv 6488 Fincfn 8813 0cc0 10981 1c1 10982 < clt 11119 -cneg 11316 Basecbs 17014 SymGrpcsymg 19075 pmSgncpsgn 19198 pmEvencevpm 19199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-addf 11060 ax-mulf 11061 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-tp 4586 df-op 4588 df-ot 4590 df-uni 4861 df-int 4903 df-iun 4951 df-iin 4952 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-tpos 8121 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-2o 8377 df-er 8578 df-map 8697 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-card 9805 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-4 12148 df-5 12149 df-6 12150 df-7 12151 df-8 12152 df-9 12153 df-n0 12344 df-xnn0 12416 df-z 12430 df-dec 12548 df-uz 12693 df-rp 12841 df-fz 13350 df-fzo 13493 df-seq 13832 df-exp 13893 df-hash 14155 df-word 14327 df-lsw 14375 df-concat 14383 df-s1 14408 df-substr 14457 df-pfx 14487 df-splice 14566 df-reverse 14575 df-s2 14665 df-struct 16950 df-sets 16967 df-slot 16985 df-ndx 16997 df-base 17015 df-ress 17044 df-plusg 17077 df-mulr 17078 df-starv 17079 df-tset 17083 df-ple 17084 df-ds 17086 df-unif 17087 df-0g 17254 df-gsum 17255 df-mre 17397 df-mrc 17398 df-acs 17400 df-mgm 18428 df-sgrp 18477 df-mnd 18488 df-mhm 18532 df-submnd 18533 df-efmnd 18609 df-grp 18681 df-minusg 18682 df-subg 18853 df-ghm 18933 df-gim 18976 df-oppg 19051 df-symg 19076 df-pmtr 19151 df-psgn 19200 df-evpm 19201 df-cmn 19488 df-abl 19489 df-mgp 19820 df-ur 19837 df-ring 19884 df-cring 19885 df-oppr 19961 df-dvdsr 19982 df-unit 19983 df-invr 20013 df-dvr 20024 df-drng 20099 df-cnfld 20708 |
This theorem is referenced by: evpmodpmf1o 20911 pmtrodpm 20912 mdetralt 21867 |
Copyright terms: Public domain | W3C validator |