MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnodpmr Structured version   Visualization version   GIF version

Theorem psgnodpmr 21506
Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmss.s 𝑆 = (SymGrp‘𝐷)
evpmss.p 𝑃 = (Base‘𝑆)
psgnevpmb.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnodpmr ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)))

Proof of Theorem psgnodpmr
StepHypRef Expression
1 simp2 1137 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → 𝐹𝑃)
2 evpmss.s . . . . . . . 8 𝑆 = (SymGrp‘𝐷)
3 evpmss.p . . . . . . . 8 𝑃 = (Base‘𝑆)
4 psgnevpmb.n . . . . . . . 8 𝑁 = (pmSgn‘𝐷)
52, 3, 4psgnevpm 21505 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁𝐹) = 1)
65ex 412 . . . . . 6 (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) → (𝑁𝐹) = 1))
76adantr 480 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁𝐹) = 1))
8 neg1rr 12179 . . . . . . 7 -1 ∈ ℝ
9 neg1lt0 12181 . . . . . . . 8 -1 < 0
10 0lt1 11707 . . . . . . . 8 0 < 1
11 0re 11183 . . . . . . . . 9 0 ∈ ℝ
12 1re 11181 . . . . . . . . 9 1 ∈ ℝ
138, 11, 12lttri 11307 . . . . . . . 8 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
149, 10, 13mp2an 692 . . . . . . 7 -1 < 1
158, 14gtneii 11293 . . . . . 6 1 ≠ -1
16 neeq1 2988 . . . . . 6 ((𝑁𝐹) = 1 → ((𝑁𝐹) ≠ -1 ↔ 1 ≠ -1))
1715, 16mpbiri 258 . . . . 5 ((𝑁𝐹) = 1 → (𝑁𝐹) ≠ -1)
187, 17syl6 35 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁𝐹) ≠ -1))
1918necon2bd 2942 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = -1 → ¬ 𝐹 ∈ (pmEven‘𝐷)))
20193impia 1117 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → ¬ 𝐹 ∈ (pmEven‘𝐷))
211, 20eldifd 3928 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914   class class class wbr 5110  cfv 6514  Fincfn 8921  0cc0 11075  1c1 11076   < clt 11215  -cneg 11413  Basecbs 17186  SymGrpcsymg 19306  pmSgncpsgn 19426  pmEvencevpm 19427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-subg 19062  df-ghm 19152  df-gim 19198  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428  df-evpm 19429  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-cnfld 21272
This theorem is referenced by:  evpmodpmf1o  21512  pmtrodpm  21513  mdetralt  22502
  Copyright terms: Public domain W3C validator