![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnodpmr | Structured version Visualization version GIF version |
Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | β’ π = (SymGrpβπ·) |
evpmss.p | β’ π = (Baseβπ) |
psgnevpmb.n | β’ π = (pmSgnβπ·) |
Ref | Expression |
---|---|
psgnodpmr | β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β πΉ β (π β (pmEvenβπ·))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . 2 β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β πΉ β π) | |
2 | evpmss.s | . . . . . . . 8 β’ π = (SymGrpβπ·) | |
3 | evpmss.p | . . . . . . . 8 β’ π = (Baseβπ) | |
4 | psgnevpmb.n | . . . . . . . 8 β’ π = (pmSgnβπ·) | |
5 | 2, 3, 4 | psgnevpm 21141 | . . . . . . 7 β’ ((π· β Fin β§ πΉ β (pmEvenβπ·)) β (πβπΉ) = 1) |
6 | 5 | ex 413 | . . . . . 6 β’ (π· β Fin β (πΉ β (pmEvenβπ·) β (πβπΉ) = 1)) |
7 | 6 | adantr 481 | . . . . 5 β’ ((π· β Fin β§ πΉ β π) β (πΉ β (pmEvenβπ·) β (πβπΉ) = 1)) |
8 | neg1rr 12326 | . . . . . . 7 β’ -1 β β | |
9 | neg1lt0 12328 | . . . . . . . 8 β’ -1 < 0 | |
10 | 0lt1 11735 | . . . . . . . 8 β’ 0 < 1 | |
11 | 0re 11215 | . . . . . . . . 9 β’ 0 β β | |
12 | 1re 11213 | . . . . . . . . 9 β’ 1 β β | |
13 | 8, 11, 12 | lttri 11339 | . . . . . . . 8 β’ ((-1 < 0 β§ 0 < 1) β -1 < 1) |
14 | 9, 10, 13 | mp2an 690 | . . . . . . 7 β’ -1 < 1 |
15 | 8, 14 | gtneii 11325 | . . . . . 6 β’ 1 β -1 |
16 | neeq1 3003 | . . . . . 6 β’ ((πβπΉ) = 1 β ((πβπΉ) β -1 β 1 β -1)) | |
17 | 15, 16 | mpbiri 257 | . . . . 5 β’ ((πβπΉ) = 1 β (πβπΉ) β -1) |
18 | 7, 17 | syl6 35 | . . . 4 β’ ((π· β Fin β§ πΉ β π) β (πΉ β (pmEvenβπ·) β (πβπΉ) β -1)) |
19 | 18 | necon2bd 2956 | . . 3 β’ ((π· β Fin β§ πΉ β π) β ((πβπΉ) = -1 β Β¬ πΉ β (pmEvenβπ·))) |
20 | 19 | 3impia 1117 | . 2 β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β Β¬ πΉ β (pmEvenβπ·)) |
21 | 1, 20 | eldifd 3959 | 1 β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β πΉ β (π β (pmEvenβπ·))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 class class class wbr 5148 βcfv 6543 Fincfn 8938 0cc0 11109 1c1 11110 < clt 11247 -cneg 11444 Basecbs 17143 SymGrpcsymg 19233 pmSgncpsgn 19356 pmEvencevpm 19357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-word 14464 df-lsw 14512 df-concat 14520 df-s1 14545 df-substr 14590 df-pfx 14620 df-splice 14699 df-reverse 14708 df-s2 14798 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-gsum 17387 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-efmnd 18749 df-grp 18821 df-minusg 18822 df-subg 19002 df-ghm 19089 df-gim 19132 df-oppg 19209 df-symg 19234 df-pmtr 19309 df-psgn 19358 df-evpm 19359 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-drng 20358 df-cnfld 20944 |
This theorem is referenced by: evpmodpmf1o 21148 pmtrodpm 21149 mdetralt 22109 |
Copyright terms: Public domain | W3C validator |