| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnodpmr | Structured version Visualization version GIF version | ||
| Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
| psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnodpmr | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ 𝑃) | |
| 2 | evpmss.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 3 | evpmss.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝑆) | |
| 4 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 5 | 2, 3, 4 | psgnevpm 21514 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) |
| 6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) = 1)) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) = 1)) |
| 8 | neg1rr 12132 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
| 9 | neg1lt0 12134 | . . . . . . . 8 ⊢ -1 < 0 | |
| 10 | 0lt1 11660 | . . . . . . . 8 ⊢ 0 < 1 | |
| 11 | 0re 11136 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 12 | 1re 11134 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | 8, 11, 12 | lttri 11260 | . . . . . . . 8 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
| 14 | 9, 10, 13 | mp2an 692 | . . . . . . 7 ⊢ -1 < 1 |
| 15 | 8, 14 | gtneii 11246 | . . . . . 6 ⊢ 1 ≠ -1 |
| 16 | neeq1 2987 | . . . . . 6 ⊢ ((𝑁‘𝐹) = 1 → ((𝑁‘𝐹) ≠ -1 ↔ 1 ≠ -1)) | |
| 17 | 15, 16 | mpbiri 258 | . . . . 5 ⊢ ((𝑁‘𝐹) = 1 → (𝑁‘𝐹) ≠ -1) |
| 18 | 7, 17 | syl6 35 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁‘𝐹) ≠ -1)) |
| 19 | 18 | necon2bd 2941 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = -1 → ¬ 𝐹 ∈ (pmEven‘𝐷))) |
| 20 | 19 | 3impia 1117 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → ¬ 𝐹 ∈ (pmEven‘𝐷)) |
| 21 | 1, 20 | eldifd 3916 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 class class class wbr 5095 ‘cfv 6486 Fincfn 8879 0cc0 11028 1c1 11029 < clt 11168 -cneg 11366 Basecbs 17138 SymGrpcsymg 19266 pmSgncpsgn 19386 pmEvencevpm 19387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-reverse 14683 df-s2 14773 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-subg 19020 df-ghm 19110 df-gim 19156 df-oppg 19243 df-symg 19267 df-pmtr 19339 df-psgn 19388 df-evpm 19389 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-drng 20634 df-cnfld 21280 |
| This theorem is referenced by: evpmodpmf1o 21521 pmtrodpm 21522 mdetralt 22511 |
| Copyright terms: Public domain | W3C validator |