MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnodpmr Structured version   Visualization version   GIF version

Theorem psgnodpmr 20905
Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmss.s 𝑆 = (SymGrp‘𝐷)
evpmss.p 𝑃 = (Base‘𝑆)
psgnevpmb.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnodpmr ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)))

Proof of Theorem psgnodpmr
StepHypRef Expression
1 simp2 1137 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → 𝐹𝑃)
2 evpmss.s . . . . . . . 8 𝑆 = (SymGrp‘𝐷)
3 evpmss.p . . . . . . . 8 𝑃 = (Base‘𝑆)
4 psgnevpmb.n . . . . . . . 8 𝑁 = (pmSgn‘𝐷)
52, 3, 4psgnevpm 20904 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁𝐹) = 1)
65ex 414 . . . . . 6 (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) → (𝑁𝐹) = 1))
76adantr 482 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁𝐹) = 1))
8 neg1rr 12198 . . . . . . 7 -1 ∈ ℝ
9 neg1lt0 12200 . . . . . . . 8 -1 < 0
10 0lt1 11607 . . . . . . . 8 0 < 1
11 0re 11087 . . . . . . . . 9 0 ∈ ℝ
12 1re 11085 . . . . . . . . 9 1 ∈ ℝ
138, 11, 12lttri 11211 . . . . . . . 8 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
149, 10, 13mp2an 690 . . . . . . 7 -1 < 1
158, 14gtneii 11197 . . . . . 6 1 ≠ -1
16 neeq1 3004 . . . . . 6 ((𝑁𝐹) = 1 → ((𝑁𝐹) ≠ -1 ↔ 1 ≠ -1))
1715, 16mpbiri 258 . . . . 5 ((𝑁𝐹) = 1 → (𝑁𝐹) ≠ -1)
187, 17syl6 35 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝐹 ∈ (pmEven‘𝐷) → (𝑁𝐹) ≠ -1))
1918necon2bd 2957 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((𝑁𝐹) = -1 → ¬ 𝐹 ∈ (pmEven‘𝐷)))
20193impia 1117 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → ¬ 𝐹 ∈ (pmEven‘𝐷))
211, 20eldifd 3916 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃 ∧ (𝑁𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941  cdif 3902   class class class wbr 5100  cfv 6488  Fincfn 8813  0cc0 10981  1c1 10982   < clt 11119  -cneg 11316  Basecbs 17014  SymGrpcsymg 19075  pmSgncpsgn 19198  pmEvencevpm 19199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-addf 11060  ax-mulf 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-ot 4590  df-uni 4861  df-int 4903  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-tpos 8121  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-2o 8377  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-9 12153  df-n0 12344  df-xnn0 12416  df-z 12430  df-dec 12548  df-uz 12693  df-rp 12841  df-fz 13350  df-fzo 13493  df-seq 13832  df-exp 13893  df-hash 14155  df-word 14327  df-lsw 14375  df-concat 14383  df-s1 14408  df-substr 14457  df-pfx 14487  df-splice 14566  df-reverse 14575  df-s2 14665  df-struct 16950  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-ress 17044  df-plusg 17077  df-mulr 17078  df-starv 17079  df-tset 17083  df-ple 17084  df-ds 17086  df-unif 17087  df-0g 17254  df-gsum 17255  df-mre 17397  df-mrc 17398  df-acs 17400  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-mhm 18532  df-submnd 18533  df-efmnd 18609  df-grp 18681  df-minusg 18682  df-subg 18853  df-ghm 18933  df-gim 18976  df-oppg 19051  df-symg 19076  df-pmtr 19151  df-psgn 19200  df-evpm 19201  df-cmn 19488  df-abl 19489  df-mgp 19820  df-ur 19837  df-ring 19884  df-cring 19885  df-oppr 19961  df-dvdsr 19982  df-unit 19983  df-invr 20013  df-dvr 20024  df-drng 20099  df-cnfld 20708
This theorem is referenced by:  evpmodpmf1o  20911  pmtrodpm  20912  mdetralt  21867
  Copyright terms: Public domain W3C validator