MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdsnn0 Structured version   Visualization version   GIF version

Theorem oddvdsnn0 19481
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvdsnn0 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvdsnn0
StepHypRef Expression
1 0nn0 12464 . . . . 5 0 ∈ ℕ0
2 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . 7 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . 7 · = (.g𝐺)
5 odid.4 . . . . . . 7 0 = (0g𝐺)
62, 3, 4, 5mndodcong 19479 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)))
763expia 1121 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
81, 7mpanr2 704 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ 𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
983impa 1109 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
10 nn0cn 12459 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
11103ad2ant3 1135 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1211subid1d 11529 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 − 0) = 𝑁)
1312breq2d 5122 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑂𝐴) ∥ 𝑁))
142, 5, 4mulg0 19013 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
15143ad2ant2 1134 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (0 · 𝐴) = 0 )
1615eqeq2d 2741 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑁 · 𝐴) = (0 · 𝐴) ↔ (𝑁 · 𝐴) = 0 ))
1713, 16bibi12d 345 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)) ↔ ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
189, 17sylibd 239 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
19 simpr 484 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
2019breq1d 5120 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
21 simpl3 1194 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℕ0)
22 nn0z 12561 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 0dvds 16253 . . . . 5 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2421, 22, 233syl 18 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
2515adantr 480 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
26 oveq1 7397 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
2726eqeq1d 2732 . . . . . 6 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
2825, 27syl5ibrcom 247 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
292, 3, 4, 5odlem2 19476 . . . . . . . . . . . 12 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
30293com23 1126 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ∈ (1...𝑁))
31 elfznn 13521 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...𝑁) → (𝑂𝐴) ∈ ℕ)
32 nnne0 12227 . . . . . . . . . . 11 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ≠ 0)
3330, 31, 323syl 18 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ≠ 0)
34333expia 1121 . . . . . . . . 9 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
35343ad2antl2 1187 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
3635necon2bd 2942 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → ¬ 𝑁 ∈ ℕ))
37 simpl3 1194 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → 𝑁 ∈ ℕ0)
38 elnn0 12451 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3937, 38sylib 218 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4039ord 864 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
4136, 40syld 47 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
4241impancom 451 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
4328, 42impbid 212 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
4420, 24, 433bitrd 305 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4544ex 412 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
462, 3odcl 19473 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
47463ad2ant2 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
48 elnn0 12451 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
4947, 48sylib 218 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
5018, 45, 49mpjaod 860 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  cmin 11412  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  cdvds 16229  Basecbs 17186  0gc0g 17409  Mndcmnd 18668  .gcmg 19006  odcod 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-dvds 16230  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mulg 19007  df-od 19465
This theorem is referenced by:  isprimroot2  42089  grpods  42189
  Copyright terms: Public domain W3C validator