MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdsnn0 Structured version   Visualization version   GIF version

Theorem oddvdsnn0 19586
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvdsnn0 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvdsnn0
StepHypRef Expression
1 0nn0 12568 . . . . 5 0 ∈ ℕ0
2 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . 7 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . 7 · = (.g𝐺)
5 odid.4 . . . . . . 7 0 = (0g𝐺)
62, 3, 4, 5mndodcong 19584 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)))
763expia 1121 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
81, 7mpanr2 703 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ 𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
983impa 1110 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
10 nn0cn 12563 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
11103ad2ant3 1135 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1211subid1d 11636 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 − 0) = 𝑁)
1312breq2d 5178 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑂𝐴) ∥ 𝑁))
142, 5, 4mulg0 19114 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
15143ad2ant2 1134 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (0 · 𝐴) = 0 )
1615eqeq2d 2751 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑁 · 𝐴) = (0 · 𝐴) ↔ (𝑁 · 𝐴) = 0 ))
1713, 16bibi12d 345 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)) ↔ ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
189, 17sylibd 239 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
19 simpr 484 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
2019breq1d 5176 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
21 simpl3 1193 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℕ0)
22 nn0z 12664 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 0dvds 16325 . . . . 5 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2421, 22, 233syl 18 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
2515adantr 480 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
26 oveq1 7455 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
2726eqeq1d 2742 . . . . . 6 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
2825, 27syl5ibrcom 247 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
292, 3, 4, 5odlem2 19581 . . . . . . . . . . . 12 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
30293com23 1126 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ∈ (1...𝑁))
31 elfznn 13613 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...𝑁) → (𝑂𝐴) ∈ ℕ)
32 nnne0 12327 . . . . . . . . . . 11 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ≠ 0)
3330, 31, 323syl 18 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ≠ 0)
34333expia 1121 . . . . . . . . 9 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
35343ad2antl2 1186 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
3635necon2bd 2962 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → ¬ 𝑁 ∈ ℕ))
37 simpl3 1193 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → 𝑁 ∈ ℕ0)
38 elnn0 12555 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3937, 38sylib 218 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4039ord 863 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
4136, 40syld 47 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
4241impancom 451 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
4328, 42impbid 212 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
4420, 24, 433bitrd 305 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4544ex 412 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
462, 3odcl 19578 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
47463ad2ant2 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
48 elnn0 12555 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
4947, 48sylib 218 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
5018, 45, 49mpjaod 859 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  cmin 11520  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  cdvds 16302  Basecbs 17258  0gc0g 17499  Mndcmnd 18772  .gcmg 19107  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-dvds 16303  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108  df-od 19570
This theorem is referenced by:  isprimroot2  42051  grpods  42151
  Copyright terms: Public domain W3C validator