MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdsnn0 Structured version   Visualization version   GIF version

Theorem oddvdsnn0 19562
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvdsnn0 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvdsnn0
StepHypRef Expression
1 0nn0 12541 . . . . 5 0 ∈ ℕ0
2 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . 7 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . 7 · = (.g𝐺)
5 odid.4 . . . . . . 7 0 = (0g𝐺)
62, 3, 4, 5mndodcong 19560 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)))
763expia 1122 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
81, 7mpanr2 704 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ 𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
983impa 1110 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
10 nn0cn 12536 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
11103ad2ant3 1136 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1211subid1d 11609 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 − 0) = 𝑁)
1312breq2d 5155 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑂𝐴) ∥ 𝑁))
142, 5, 4mulg0 19092 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
15143ad2ant2 1135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (0 · 𝐴) = 0 )
1615eqeq2d 2748 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑁 · 𝐴) = (0 · 𝐴) ↔ (𝑁 · 𝐴) = 0 ))
1713, 16bibi12d 345 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)) ↔ ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
189, 17sylibd 239 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
19 simpr 484 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
2019breq1d 5153 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
21 simpl3 1194 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℕ0)
22 nn0z 12638 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 0dvds 16314 . . . . 5 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2421, 22, 233syl 18 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
2515adantr 480 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
26 oveq1 7438 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
2726eqeq1d 2739 . . . . . 6 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
2825, 27syl5ibrcom 247 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
292, 3, 4, 5odlem2 19557 . . . . . . . . . . . 12 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
30293com23 1127 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ∈ (1...𝑁))
31 elfznn 13593 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...𝑁) → (𝑂𝐴) ∈ ℕ)
32 nnne0 12300 . . . . . . . . . . 11 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ≠ 0)
3330, 31, 323syl 18 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ≠ 0)
34333expia 1122 . . . . . . . . 9 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
35343ad2antl2 1187 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
3635necon2bd 2956 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → ¬ 𝑁 ∈ ℕ))
37 simpl3 1194 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → 𝑁 ∈ ℕ0)
38 elnn0 12528 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3937, 38sylib 218 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4039ord 865 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
4136, 40syld 47 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
4241impancom 451 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
4328, 42impbid 212 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
4420, 24, 433bitrd 305 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4544ex 412 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
462, 3odcl 19554 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
47463ad2ant2 1135 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
48 elnn0 12528 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
4947, 48sylib 218 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
5018, 45, 49mpjaod 861 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156  cmin 11492  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  cdvds 16290  Basecbs 17247  0gc0g 17484  Mndcmnd 18747  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-dvds 16291  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mulg 19086  df-od 19546
This theorem is referenced by:  isprimroot2  42095  grpods  42195
  Copyright terms: Public domain W3C validator