MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdsnn0 Structured version   Visualization version   GIF version

Theorem oddvdsnn0 18169
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvdsnn0 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvdsnn0
StepHypRef Expression
1 0nn0 11513 . . . . 5 0 ∈ ℕ0
2 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . 7 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . 7 · = (.g𝐺)
5 odid.4 . . . . . . 7 0 = (0g𝐺)
62, 3, 4, 5mndodcong 18167 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)))
763expia 1114 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
81, 7mpanr2 684 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ 𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
983impa 1100 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴))))
10 nn0cn 11508 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
11103ad2ant3 1129 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1211subid1d 10586 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 − 0) = 𝑁)
1312breq2d 4799 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑂𝐴) ∥ 𝑁))
142, 5, 4mulg0 17753 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
15143ad2ant2 1128 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (0 · 𝐴) = 0 )
1615eqeq2d 2781 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑁 · 𝐴) = (0 · 𝐴) ↔ (𝑁 · 𝐴) = 0 ))
1713, 16bibi12d 334 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (((𝑂𝐴) ∥ (𝑁 − 0) ↔ (𝑁 · 𝐴) = (0 · 𝐴)) ↔ ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
189, 17sylibd 229 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
19 simpr 471 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
2019breq1d 4797 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
21 simpl3 1231 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℕ0)
22 nn0z 11606 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
23 0dvds 15210 . . . . 5 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
2421, 22, 233syl 18 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
2515adantr 466 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
26 oveq1 6802 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
2726eqeq1d 2773 . . . . . 6 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
2825, 27syl5ibrcom 237 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
292, 3, 4, 5odlem2 18164 . . . . . . . . . . . 12 ((𝐴𝑋𝑁 ∈ ℕ ∧ (𝑁 · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...𝑁))
30293com23 1120 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ∈ (1...𝑁))
31 elfznn 12576 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...𝑁) → (𝑂𝐴) ∈ ℕ)
32 nnne0 11258 . . . . . . . . . . 11 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ≠ 0)
3330, 31, 323syl 18 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0𝑁 ∈ ℕ) → (𝑂𝐴) ≠ 0)
34333expia 1114 . . . . . . . . 9 ((𝐴𝑋 ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
35343ad2antl2 1201 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ → (𝑂𝐴) ≠ 0))
3635necon2bd 2959 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → ¬ 𝑁 ∈ ℕ))
37 simpl3 1231 . . . . . . . . 9 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → 𝑁 ∈ ℕ0)
38 elnn0 11500 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3937, 38sylib 208 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4039ord 853 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
4136, 40syld 47 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
4241impancom 439 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
4328, 42impbid 202 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
4420, 24, 433bitrd 294 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4544ex 397 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )))
462, 3odcl 18161 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
47463ad2ant2 1128 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
48 elnn0 11500 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
4947, 48sylib 208 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
5018, 45, 49mpjaod 849 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  cfv 6030  (class class class)co 6795  cc 10139  0cc0 10141  1c1 10142  cmin 10471  cn 11225  0cn0 11498  cz 11583  ...cfz 12532  cdvds 15188  Basecbs 16063  0gc0g 16307  Mndcmnd 17501  .gcmg 17747  odcod 18150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fz 12533  df-fl 12800  df-mod 12876  df-seq 13008  df-dvds 15189  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mulg 17748  df-od 18154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator