MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1a Structured version   Visualization version   GIF version

Theorem metnrmlem1a 24355
Description: Lemma for metnrm 24359. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1a ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1a
StepHypRef Expression
1 metnrmlem.4 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
21adantr 482 . . . . 5 ((𝜑𝐴𝑇) → (𝑆𝑇) = ∅)
3 inelcm 4462 . . . . . . . 8 ((𝐴𝑆𝐴𝑇) → (𝑆𝑇) ≠ ∅)
43expcom 415 . . . . . . 7 (𝐴𝑇 → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
54adantl 483 . . . . . 6 ((𝜑𝐴𝑇) → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
65necon2bd 2957 . . . . 5 ((𝜑𝐴𝑇) → ((𝑆𝑇) = ∅ → ¬ 𝐴𝑆))
72, 6mpd 15 . . . 4 ((𝜑𝐴𝑇) → ¬ 𝐴𝑆)
8 eqcom 2740 . . . . . 6 (0 = (𝐹𝐴) ↔ (𝐹𝐴) = 0)
9 metnrmlem.1 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
109adantr 482 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐷 ∈ (∞Met‘𝑋))
11 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
1211adantr 482 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑆 ∈ (Clsd‘𝐽))
13 eqid 2733 . . . . . . . . . 10 𝐽 = 𝐽
1413cldss 22514 . . . . . . . . 9 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
1512, 14syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑆 𝐽)
16 metdscn.j . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
1716mopnuni 23928 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1810, 17syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑋 = 𝐽)
1915, 18sseqtrrd 4021 . . . . . . 7 ((𝜑𝐴𝑇) → 𝑆𝑋)
20 metnrmlem.3 . . . . . . . . . . 11 (𝜑𝑇 ∈ (Clsd‘𝐽))
2120adantr 482 . . . . . . . . . 10 ((𝜑𝐴𝑇) → 𝑇 ∈ (Clsd‘𝐽))
2213cldss 22514 . . . . . . . . . 10 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
2321, 22syl 17 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑇 𝐽)
2423, 18sseqtrrd 4021 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑇𝑋)
25 simpr 486 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝐴𝑇)
2624, 25sseldd 3981 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐴𝑋)
27 metdscn.f . . . . . . . 8 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2827, 16metdseq0 24351 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
2910, 19, 26, 28syl3anc 1372 . . . . . 6 ((𝜑𝐴𝑇) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
308, 29bitrid 283 . . . . 5 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
31 cldcls 22527 . . . . . . 7 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
3212, 31syl 17 . . . . . 6 ((𝜑𝐴𝑇) → ((cls‘𝐽)‘𝑆) = 𝑆)
3332eleq2d 2820 . . . . 5 ((𝜑𝐴𝑇) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝐴𝑆))
3430, 33bitrd 279 . . . 4 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴𝑆))
357, 34mtbird 325 . . 3 ((𝜑𝐴𝑇) → ¬ 0 = (𝐹𝐴))
3627metdsf 24345 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3710, 19, 36syl2anc 585 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐹:𝑋⟶(0[,]+∞))
3837, 26ffvelcdmd 7082 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ (0[,]+∞))
39 elxrge0 13429 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
4039simprbi 498 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
4138, 40syl 17 . . . . 5 ((𝜑𝐴𝑇) → 0 ≤ (𝐹𝐴))
42 0xr 11256 . . . . . 6 0 ∈ ℝ*
43 eliccxr 13407 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
4438, 43syl 17 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ ℝ*)
45 xrleloe 13118 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4642, 44, 45sylancr 588 . . . . 5 ((𝜑𝐴𝑇) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4741, 46mpbid 231 . . . 4 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
4847ord 863 . . 3 ((𝜑𝐴𝑇) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
4935, 48mt3d 148 . 2 ((𝜑𝐴𝑇) → 0 < (𝐹𝐴))
50 1xr 11268 . . . . 5 1 ∈ ℝ*
51 ifcl 4571 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
5250, 44, 51sylancr 588 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
53 1red 11210 . . . 4 ((𝜑𝐴𝑇) → 1 ∈ ℝ)
54 0lt1 11731 . . . . . 6 0 < 1
55 breq2 5150 . . . . . . 7 (1 = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < 1 ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
56 breq2 5150 . . . . . . 7 ((𝐹𝐴) = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < (𝐹𝐴) ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
5755, 56ifboth 4565 . . . . . 6 ((0 < 1 ∧ 0 < (𝐹𝐴)) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
5854, 49, 57sylancr 588 . . . . 5 ((𝜑𝐴𝑇) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
59 xrltle 13123 . . . . . 6 ((0 ∈ ℝ* ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6042, 52, 59sylancr 588 . . . . 5 ((𝜑𝐴𝑇) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6158, 60mpd 15 . . . 4 ((𝜑𝐴𝑇) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
62 xrmin1 13151 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
6350, 44, 62sylancr 588 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
64 xrrege0 13148 . . . 4 (((if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6552, 53, 61, 63, 64syl22anc 838 . . 3 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6665, 58elrpd 13008 . 2 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+)
6749, 66jca 513 1 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  cin 3945  wss 3946  c0 4320  ifcif 4526   cuni 4906   class class class wbr 5146  cmpt 5229  ran crn 5675  wf 6535  cfv 6539  (class class class)co 7403  infcinf 9431  cr 11104  0cc0 11105  1c1 11106  +∞cpnf 11240  *cxr 11242   < clt 11243  cle 11244  +crp 12969  [,]cicc 13322  ∞Metcxmet 20913  MetOpencmopn 20918  Clsdccld 22501  clsccl 22503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-n0 12468  df-z 12554  df-uz 12818  df-q 12928  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-icc 13326  df-topgen 17384  df-psmet 20920  df-xmet 20921  df-bl 20923  df-mopn 20924  df-top 22377  df-topon 22394  df-bases 22430  df-cld 22504  df-ntr 22505  df-cls 22506
This theorem is referenced by:  metnrmlem2  24357  metnrmlem3  24358
  Copyright terms: Public domain W3C validator