MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1a Structured version   Visualization version   GIF version

Theorem metnrmlem1a 23466
Description: Lemma for metnrm 23470. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1a ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1a
StepHypRef Expression
1 metnrmlem.4 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
21adantr 483 . . . . 5 ((𝜑𝐴𝑇) → (𝑆𝑇) = ∅)
3 inelcm 4414 . . . . . . . 8 ((𝐴𝑆𝐴𝑇) → (𝑆𝑇) ≠ ∅)
43expcom 416 . . . . . . 7 (𝐴𝑇 → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
54adantl 484 . . . . . 6 ((𝜑𝐴𝑇) → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
65necon2bd 3032 . . . . 5 ((𝜑𝐴𝑇) → ((𝑆𝑇) = ∅ → ¬ 𝐴𝑆))
72, 6mpd 15 . . . 4 ((𝜑𝐴𝑇) → ¬ 𝐴𝑆)
8 eqcom 2828 . . . . . 6 (0 = (𝐹𝐴) ↔ (𝐹𝐴) = 0)
9 metnrmlem.1 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
109adantr 483 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐷 ∈ (∞Met‘𝑋))
11 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
1211adantr 483 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑆 ∈ (Clsd‘𝐽))
13 eqid 2821 . . . . . . . . . 10 𝐽 = 𝐽
1413cldss 21637 . . . . . . . . 9 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
1512, 14syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑆 𝐽)
16 metdscn.j . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
1716mopnuni 23051 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1810, 17syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑋 = 𝐽)
1915, 18sseqtrrd 4008 . . . . . . 7 ((𝜑𝐴𝑇) → 𝑆𝑋)
20 metnrmlem.3 . . . . . . . . . . 11 (𝜑𝑇 ∈ (Clsd‘𝐽))
2120adantr 483 . . . . . . . . . 10 ((𝜑𝐴𝑇) → 𝑇 ∈ (Clsd‘𝐽))
2213cldss 21637 . . . . . . . . . 10 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
2321, 22syl 17 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑇 𝐽)
2423, 18sseqtrrd 4008 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑇𝑋)
25 simpr 487 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝐴𝑇)
2624, 25sseldd 3968 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐴𝑋)
27 metdscn.f . . . . . . . 8 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2827, 16metdseq0 23462 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
2910, 19, 26, 28syl3anc 1367 . . . . . 6 ((𝜑𝐴𝑇) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
308, 29syl5bb 285 . . . . 5 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
31 cldcls 21650 . . . . . . 7 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
3212, 31syl 17 . . . . . 6 ((𝜑𝐴𝑇) → ((cls‘𝐽)‘𝑆) = 𝑆)
3332eleq2d 2898 . . . . 5 ((𝜑𝐴𝑇) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝐴𝑆))
3430, 33bitrd 281 . . . 4 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴𝑆))
357, 34mtbird 327 . . 3 ((𝜑𝐴𝑇) → ¬ 0 = (𝐹𝐴))
3627metdsf 23456 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3710, 19, 36syl2anc 586 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐹:𝑋⟶(0[,]+∞))
3837, 26ffvelrnd 6852 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ (0[,]+∞))
39 elxrge0 12846 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
4039simprbi 499 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
4138, 40syl 17 . . . . 5 ((𝜑𝐴𝑇) → 0 ≤ (𝐹𝐴))
42 0xr 10688 . . . . . 6 0 ∈ ℝ*
43 eliccxr 12824 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
4438, 43syl 17 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ ℝ*)
45 xrleloe 12538 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4642, 44, 45sylancr 589 . . . . 5 ((𝜑𝐴𝑇) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4741, 46mpbid 234 . . . 4 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
4847ord 860 . . 3 ((𝜑𝐴𝑇) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
4935, 48mt3d 150 . 2 ((𝜑𝐴𝑇) → 0 < (𝐹𝐴))
50 1xr 10700 . . . . 5 1 ∈ ℝ*
51 ifcl 4511 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
5250, 44, 51sylancr 589 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
53 1red 10642 . . . 4 ((𝜑𝐴𝑇) → 1 ∈ ℝ)
54 0lt1 11162 . . . . . 6 0 < 1
55 breq2 5070 . . . . . . 7 (1 = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < 1 ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
56 breq2 5070 . . . . . . 7 ((𝐹𝐴) = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < (𝐹𝐴) ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
5755, 56ifboth 4505 . . . . . 6 ((0 < 1 ∧ 0 < (𝐹𝐴)) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
5854, 49, 57sylancr 589 . . . . 5 ((𝜑𝐴𝑇) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
59 xrltle 12543 . . . . . 6 ((0 ∈ ℝ* ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6042, 52, 59sylancr 589 . . . . 5 ((𝜑𝐴𝑇) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6158, 60mpd 15 . . . 4 ((𝜑𝐴𝑇) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
62 xrmin1 12571 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
6350, 44, 62sylancr 589 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
64 xrrege0 12568 . . . 4 (((if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6552, 53, 61, 63, 64syl22anc 836 . . 3 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6665, 58elrpd 12429 . 2 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+)
6749, 66jca 514 1 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  cin 3935  wss 3936  c0 4291  ifcif 4467   cuni 4838   class class class wbr 5066  cmpt 5146  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  infcinf 8905  cr 10536  0cc0 10537  1c1 10538  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  +crp 12390  [,]cicc 12742  ∞Metcxmet 20530  MetOpencmopn 20535  Clsdccld 21624  clsccl 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629
This theorem is referenced by:  metnrmlem2  23468  metnrmlem3  23469
  Copyright terms: Public domain W3C validator