MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1a Structured version   Visualization version   GIF version

Theorem metnrmlem1a 24774
Description: Lemma for metnrm 24778. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1a ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1a
StepHypRef Expression
1 metnrmlem.4 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
21adantr 480 . . . . 5 ((𝜑𝐴𝑇) → (𝑆𝑇) = ∅)
3 inelcm 4412 . . . . . . . 8 ((𝐴𝑆𝐴𝑇) → (𝑆𝑇) ≠ ∅)
43expcom 413 . . . . . . 7 (𝐴𝑇 → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
54adantl 481 . . . . . 6 ((𝜑𝐴𝑇) → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
65necon2bd 2944 . . . . 5 ((𝜑𝐴𝑇) → ((𝑆𝑇) = ∅ → ¬ 𝐴𝑆))
72, 6mpd 15 . . . 4 ((𝜑𝐴𝑇) → ¬ 𝐴𝑆)
8 eqcom 2738 . . . . . 6 (0 = (𝐹𝐴) ↔ (𝐹𝐴) = 0)
9 metnrmlem.1 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
109adantr 480 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐷 ∈ (∞Met‘𝑋))
11 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
1211adantr 480 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑆 ∈ (Clsd‘𝐽))
13 eqid 2731 . . . . . . . . . 10 𝐽 = 𝐽
1413cldss 22944 . . . . . . . . 9 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
1512, 14syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑆 𝐽)
16 metdscn.j . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
1716mopnuni 24356 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1810, 17syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑋 = 𝐽)
1915, 18sseqtrrd 3967 . . . . . . 7 ((𝜑𝐴𝑇) → 𝑆𝑋)
20 metnrmlem.3 . . . . . . . . . . 11 (𝜑𝑇 ∈ (Clsd‘𝐽))
2120adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝑇) → 𝑇 ∈ (Clsd‘𝐽))
2213cldss 22944 . . . . . . . . . 10 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
2321, 22syl 17 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑇 𝐽)
2423, 18sseqtrrd 3967 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑇𝑋)
25 simpr 484 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝐴𝑇)
2624, 25sseldd 3930 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐴𝑋)
27 metdscn.f . . . . . . . 8 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2827, 16metdseq0 24770 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
2910, 19, 26, 28syl3anc 1373 . . . . . 6 ((𝜑𝐴𝑇) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
308, 29bitrid 283 . . . . 5 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
31 cldcls 22957 . . . . . . 7 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
3212, 31syl 17 . . . . . 6 ((𝜑𝐴𝑇) → ((cls‘𝐽)‘𝑆) = 𝑆)
3332eleq2d 2817 . . . . 5 ((𝜑𝐴𝑇) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝐴𝑆))
3430, 33bitrd 279 . . . 4 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴𝑆))
357, 34mtbird 325 . . 3 ((𝜑𝐴𝑇) → ¬ 0 = (𝐹𝐴))
3627metdsf 24764 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3710, 19, 36syl2anc 584 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐹:𝑋⟶(0[,]+∞))
3837, 26ffvelcdmd 7018 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ (0[,]+∞))
39 elxrge0 13357 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
4039simprbi 496 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
4138, 40syl 17 . . . . 5 ((𝜑𝐴𝑇) → 0 ≤ (𝐹𝐴))
42 0xr 11159 . . . . . 6 0 ∈ ℝ*
43 eliccxr 13335 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
4438, 43syl 17 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ ℝ*)
45 xrleloe 13043 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4642, 44, 45sylancr 587 . . . . 5 ((𝜑𝐴𝑇) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4741, 46mpbid 232 . . . 4 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
4847ord 864 . . 3 ((𝜑𝐴𝑇) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
4935, 48mt3d 148 . 2 ((𝜑𝐴𝑇) → 0 < (𝐹𝐴))
50 1xr 11171 . . . . 5 1 ∈ ℝ*
51 ifcl 4518 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
5250, 44, 51sylancr 587 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
53 1red 11113 . . . 4 ((𝜑𝐴𝑇) → 1 ∈ ℝ)
54 0lt1 11639 . . . . . 6 0 < 1
55 breq2 5093 . . . . . . 7 (1 = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < 1 ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
56 breq2 5093 . . . . . . 7 ((𝐹𝐴) = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < (𝐹𝐴) ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
5755, 56ifboth 4512 . . . . . 6 ((0 < 1 ∧ 0 < (𝐹𝐴)) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
5854, 49, 57sylancr 587 . . . . 5 ((𝜑𝐴𝑇) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
59 xrltle 13048 . . . . . 6 ((0 ∈ ℝ* ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6042, 52, 59sylancr 587 . . . . 5 ((𝜑𝐴𝑇) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6158, 60mpd 15 . . . 4 ((𝜑𝐴𝑇) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
62 xrmin1 13076 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
6350, 44, 62sylancr 587 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
64 xrrege0 13073 . . . 4 (((if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6552, 53, 61, 63, 64syl22anc 838 . . 3 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6665, 58elrpd 12931 . 2 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+)
6749, 66jca 511 1 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  cin 3896  wss 3897  c0 4280  ifcif 4472   cuni 4856   class class class wbr 5089  cmpt 5170  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  infcinf 9325  cr 11005  0cc0 11006  1c1 11007  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  +crp 12890  [,]cicc 13248  ∞Metcxmet 21276  MetOpencmopn 21281  Clsdccld 22931  clsccl 22933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936
This theorem is referenced by:  metnrmlem2  24776  metnrmlem3  24777
  Copyright terms: Public domain W3C validator