MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1a Structured version   Visualization version   GIF version

Theorem metnrmlem1a 23927
Description: Lemma for metnrm 23931. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
Assertion
Ref Expression
metnrmlem1a ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑇,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem1a
StepHypRef Expression
1 metnrmlem.4 . . . . . 6 (𝜑 → (𝑆𝑇) = ∅)
21adantr 480 . . . . 5 ((𝜑𝐴𝑇) → (𝑆𝑇) = ∅)
3 inelcm 4395 . . . . . . . 8 ((𝐴𝑆𝐴𝑇) → (𝑆𝑇) ≠ ∅)
43expcom 413 . . . . . . 7 (𝐴𝑇 → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
54adantl 481 . . . . . 6 ((𝜑𝐴𝑇) → (𝐴𝑆 → (𝑆𝑇) ≠ ∅))
65necon2bd 2958 . . . . 5 ((𝜑𝐴𝑇) → ((𝑆𝑇) = ∅ → ¬ 𝐴𝑆))
72, 6mpd 15 . . . 4 ((𝜑𝐴𝑇) → ¬ 𝐴𝑆)
8 eqcom 2745 . . . . . 6 (0 = (𝐹𝐴) ↔ (𝐹𝐴) = 0)
9 metnrmlem.1 . . . . . . . 8 (𝜑𝐷 ∈ (∞Met‘𝑋))
109adantr 480 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐷 ∈ (∞Met‘𝑋))
11 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
1211adantr 480 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑆 ∈ (Clsd‘𝐽))
13 eqid 2738 . . . . . . . . . 10 𝐽 = 𝐽
1413cldss 22088 . . . . . . . . 9 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
1512, 14syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑆 𝐽)
16 metdscn.j . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
1716mopnuni 23502 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1810, 17syl 17 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑋 = 𝐽)
1915, 18sseqtrrd 3958 . . . . . . 7 ((𝜑𝐴𝑇) → 𝑆𝑋)
20 metnrmlem.3 . . . . . . . . . . 11 (𝜑𝑇 ∈ (Clsd‘𝐽))
2120adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝑇) → 𝑇 ∈ (Clsd‘𝐽))
2213cldss 22088 . . . . . . . . . 10 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
2321, 22syl 17 . . . . . . . . 9 ((𝜑𝐴𝑇) → 𝑇 𝐽)
2423, 18sseqtrrd 3958 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝑇𝑋)
25 simpr 484 . . . . . . . 8 ((𝜑𝐴𝑇) → 𝐴𝑇)
2624, 25sseldd 3918 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐴𝑋)
27 metdscn.f . . . . . . . 8 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2827, 16metdseq0 23923 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
2910, 19, 26, 28syl3anc 1369 . . . . . 6 ((𝜑𝐴𝑇) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
308, 29syl5bb 282 . . . . 5 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
31 cldcls 22101 . . . . . . 7 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
3212, 31syl 17 . . . . . 6 ((𝜑𝐴𝑇) → ((cls‘𝐽)‘𝑆) = 𝑆)
3332eleq2d 2824 . . . . 5 ((𝜑𝐴𝑇) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝐴𝑆))
3430, 33bitrd 278 . . . 4 ((𝜑𝐴𝑇) → (0 = (𝐹𝐴) ↔ 𝐴𝑆))
357, 34mtbird 324 . . 3 ((𝜑𝐴𝑇) → ¬ 0 = (𝐹𝐴))
3627metdsf 23917 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3710, 19, 36syl2anc 583 . . . . . . 7 ((𝜑𝐴𝑇) → 𝐹:𝑋⟶(0[,]+∞))
3837, 26ffvelrnd 6944 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ (0[,]+∞))
39 elxrge0 13118 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
4039simprbi 496 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
4138, 40syl 17 . . . . 5 ((𝜑𝐴𝑇) → 0 ≤ (𝐹𝐴))
42 0xr 10953 . . . . . 6 0 ∈ ℝ*
43 eliccxr 13096 . . . . . . 7 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
4438, 43syl 17 . . . . . 6 ((𝜑𝐴𝑇) → (𝐹𝐴) ∈ ℝ*)
45 xrleloe 12807 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4642, 44, 45sylancr 586 . . . . 5 ((𝜑𝐴𝑇) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
4741, 46mpbid 231 . . . 4 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
4847ord 860 . . 3 ((𝜑𝐴𝑇) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
4935, 48mt3d 148 . 2 ((𝜑𝐴𝑇) → 0 < (𝐹𝐴))
50 1xr 10965 . . . . 5 1 ∈ ℝ*
51 ifcl 4501 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
5250, 44, 51sylancr 586 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*)
53 1red 10907 . . . 4 ((𝜑𝐴𝑇) → 1 ∈ ℝ)
54 0lt1 11427 . . . . . 6 0 < 1
55 breq2 5074 . . . . . . 7 (1 = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < 1 ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
56 breq2 5074 . . . . . . 7 ((𝐹𝐴) = if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → (0 < (𝐹𝐴) ↔ 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
5755, 56ifboth 4495 . . . . . 6 ((0 < 1 ∧ 0 < (𝐹𝐴)) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
5854, 49, 57sylancr 586 . . . . 5 ((𝜑𝐴𝑇) → 0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
59 xrltle 12812 . . . . . 6 ((0 ∈ ℝ* ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ*) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6042, 52, 59sylancr 586 . . . . 5 ((𝜑𝐴𝑇) → (0 < if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴))))
6158, 60mpd 15 . . . 4 ((𝜑𝐴𝑇) → 0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)))
62 xrmin1 12840 . . . . 5 ((1 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
6350, 44, 62sylancr 586 . . . 4 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)
64 xrrege0 12837 . . . 4 (((if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ≤ 1)) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6552, 53, 61, 63, 64syl22anc 835 . . 3 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ)
6665, 58elrpd 12698 . 2 ((𝜑𝐴𝑇) → if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+)
6749, 66jca 511 1 ((𝜑𝐴𝑇) → (0 < (𝐹𝐴) ∧ if(1 ≤ (𝐹𝐴), 1, (𝐹𝐴)) ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  c0 4253  ifcif 4456   cuni 4836   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  0cc0 10802  1c1 10803  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  +crp 12659  [,]cicc 13011  ∞Metcxmet 20495  MetOpencmopn 20500  Clsdccld 22075  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  metnrmlem2  23929  metnrmlem3  23930
  Copyright terms: Public domain W3C validator