Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝐴‘𝑥) = (𝐴‘𝑎)) |
2 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝐵‘𝑥) = (𝐵‘𝑎)) |
3 | 1, 2 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → ((𝐴‘𝑥) = (𝐵‘𝑥) ↔ (𝐴‘𝑎) = (𝐵‘𝑎))) |
4 | 3 | rspcva 3550 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (𝐴‘𝑎) = (𝐵‘𝑎)) |
5 | | nelrnfvne 6937 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐵 ∧ 𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵‘𝑎) ≠ ∅) |
6 | | n0 4277 |
. . . . . . . . . . . . . 14
⊢ ((𝐵‘𝑎) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝐵‘𝑎)) |
7 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵‘𝑎) = (𝐴‘𝑎) → (𝑏 ∈ (𝐵‘𝑎) ↔ 𝑏 ∈ (𝐴‘𝑎))) |
8 | 7 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴‘𝑎) = (𝐵‘𝑎) → (𝑏 ∈ (𝐵‘𝑎) ↔ 𝑏 ∈ (𝐴‘𝑎))) |
9 | | elfvdm 6788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ (𝐴‘𝑎) → 𝑎 ∈ dom 𝐴) |
10 | 8, 9 | syl6bi 252 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴‘𝑎) = (𝐵‘𝑎) → (𝑏 ∈ (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)) |
11 | 10 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝐵‘𝑎) → ((𝐴‘𝑎) = (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)) |
12 | 11 | exlimiv 1934 |
. . . . . . . . . . . . . 14
⊢
(∃𝑏 𝑏 ∈ (𝐵‘𝑎) → ((𝐴‘𝑎) = (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)) |
13 | 6, 12 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ ((𝐵‘𝑎) ≠ ∅ → ((𝐴‘𝑎) = (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)) |
14 | 5, 13 | syl 17 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐵 ∧ 𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → ((𝐴‘𝑎) = (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)) |
15 | 14 | 3exp 1117 |
. . . . . . . . . . 11
⊢ (Fun
𝐵 → (𝑎 ∈ dom 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴‘𝑎) = (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)))) |
16 | 15 | com12 32 |
. . . . . . . . . 10
⊢ (𝑎 ∈ dom 𝐵 → (Fun 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴‘𝑎) = (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)))) |
17 | | fveqdmss.1 |
. . . . . . . . . 10
⊢ 𝐷 = dom 𝐵 |
18 | 16, 17 | eleq2s 2857 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐷 → (Fun 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴‘𝑎) = (𝐵‘𝑎) → 𝑎 ∈ dom 𝐴)))) |
19 | 18 | com24 95 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐷 → ((𝐴‘𝑎) = (𝐵‘𝑎) → (∅ ∉ ran 𝐵 → (Fun 𝐵 → 𝑎 ∈ dom 𝐴)))) |
20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → ((𝐴‘𝑎) = (𝐵‘𝑎) → (∅ ∉ ran 𝐵 → (Fun 𝐵 → 𝑎 ∈ dom 𝐴)))) |
21 | 4, 20 | mpd 15 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (∅ ∉ ran 𝐵 → (Fun 𝐵 → 𝑎 ∈ dom 𝐴))) |
22 | 21 | ex 412 |
. . . . 5
⊢ (𝑎 ∈ 𝐷 → (∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥) → (∅ ∉ ran 𝐵 → (Fun 𝐵 → 𝑎 ∈ dom 𝐴)))) |
23 | 22 | com23 86 |
. . . 4
⊢ (𝑎 ∈ 𝐷 → (∅ ∉ ran 𝐵 → (∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥) → (Fun 𝐵 → 𝑎 ∈ dom 𝐴)))) |
24 | 23 | com14 96 |
. . 3
⊢ (Fun
𝐵 → (∅ ∉
ran 𝐵 → (∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥) → (𝑎 ∈ 𝐷 → 𝑎 ∈ dom 𝐴)))) |
25 | 24 | 3imp 1109 |
. 2
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (𝑎 ∈ 𝐷 → 𝑎 ∈ dom 𝐴)) |
26 | 25 | ssrdv 3923 |
1
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → 𝐷 ⊆ dom 𝐴) |