MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqdmss Structured version   Visualization version   GIF version

Theorem fveqdmss 7050
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the domain of the function is contained in the domain of the class. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1 𝐷 = dom 𝐵
Assertion
Ref Expression
fveqdmss ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷

Proof of Theorem fveqdmss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
2 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐵𝑥) = (𝐵𝑎))
31, 2eqeq12d 2745 . . . . . . . 8 (𝑥 = 𝑎 → ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐴𝑎) = (𝐵𝑎)))
43rspcva 3586 . . . . . . 7 ((𝑎𝐷 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝑎) = (𝐵𝑎))
5 nelrnfvne 7049 . . . . . . . . . . . . 13 ((Fun 𝐵𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵𝑎) ≠ ∅)
6 n0 4316 . . . . . . . . . . . . . 14 ((𝐵𝑎) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝐵𝑎))
7 eleq2 2817 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑎) = (𝐴𝑎) → (𝑏 ∈ (𝐵𝑎) ↔ 𝑏 ∈ (𝐴𝑎)))
87eqcoms 2737 . . . . . . . . . . . . . . . . 17 ((𝐴𝑎) = (𝐵𝑎) → (𝑏 ∈ (𝐵𝑎) ↔ 𝑏 ∈ (𝐴𝑎)))
9 elfvdm 6895 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝐴𝑎) → 𝑎 ∈ dom 𝐴)
108, 9biimtrdi 253 . . . . . . . . . . . . . . . 16 ((𝐴𝑎) = (𝐵𝑎) → (𝑏 ∈ (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
1110com12 32 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝐵𝑎) → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
1211exlimiv 1930 . . . . . . . . . . . . . 14 (∃𝑏 𝑏 ∈ (𝐵𝑎) → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
136, 12sylbi 217 . . . . . . . . . . . . 13 ((𝐵𝑎) ≠ ∅ → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
145, 13syl 17 . . . . . . . . . . . 12 ((Fun 𝐵𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
15143exp 1119 . . . . . . . . . . 11 (Fun 𝐵 → (𝑎 ∈ dom 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))))
1615com12 32 . . . . . . . . . 10 (𝑎 ∈ dom 𝐵 → (Fun 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))))
17 fveqdmss.1 . . . . . . . . . 10 𝐷 = dom 𝐵
1816, 17eleq2s 2846 . . . . . . . . 9 (𝑎𝐷 → (Fun 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))))
1918com24 95 . . . . . . . 8 (𝑎𝐷 → ((𝐴𝑎) = (𝐵𝑎) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴))))
2019adantr 480 . . . . . . 7 ((𝑎𝐷 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝑎) = (𝐵𝑎) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴))))
214, 20mpd 15 . . . . . 6 ((𝑎𝐷 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴)))
2221ex 412 . . . . 5 (𝑎𝐷 → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴))))
2322com23 86 . . . 4 (𝑎𝐷 → (∅ ∉ ran 𝐵 → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → (Fun 𝐵𝑎 ∈ dom 𝐴))))
2423com14 96 . . 3 (Fun 𝐵 → (∅ ∉ ran 𝐵 → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → (𝑎𝐷𝑎 ∈ dom 𝐴))))
25243imp 1110 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝑎𝐷𝑎 ∈ dom 𝐴))
2625ssrdv 3952 1 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wnel 3029  wral 3044  wss 3914  c0 4296  dom cdm 5638  ran crn 5639  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  fveqressseq  7051
  Copyright terms: Public domain W3C validator