MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqdmss Structured version   Visualization version   GIF version

Theorem fveqdmss 7053
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the domain of the function is contained in the domain of the class. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1 𝐷 = dom 𝐵
Assertion
Ref Expression
fveqdmss ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷

Proof of Theorem fveqdmss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
2 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐵𝑥) = (𝐵𝑎))
31, 2eqeq12d 2746 . . . . . . . 8 (𝑥 = 𝑎 → ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐴𝑎) = (𝐵𝑎)))
43rspcva 3589 . . . . . . 7 ((𝑎𝐷 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝑎) = (𝐵𝑎))
5 nelrnfvne 7052 . . . . . . . . . . . . 13 ((Fun 𝐵𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵𝑎) ≠ ∅)
6 n0 4319 . . . . . . . . . . . . . 14 ((𝐵𝑎) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (𝐵𝑎))
7 eleq2 2818 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑎) = (𝐴𝑎) → (𝑏 ∈ (𝐵𝑎) ↔ 𝑏 ∈ (𝐴𝑎)))
87eqcoms 2738 . . . . . . . . . . . . . . . . 17 ((𝐴𝑎) = (𝐵𝑎) → (𝑏 ∈ (𝐵𝑎) ↔ 𝑏 ∈ (𝐴𝑎)))
9 elfvdm 6898 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝐴𝑎) → 𝑎 ∈ dom 𝐴)
108, 9biimtrdi 253 . . . . . . . . . . . . . . . 16 ((𝐴𝑎) = (𝐵𝑎) → (𝑏 ∈ (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
1110com12 32 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝐵𝑎) → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
1211exlimiv 1930 . . . . . . . . . . . . . 14 (∃𝑏 𝑏 ∈ (𝐵𝑎) → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
136, 12sylbi 217 . . . . . . . . . . . . 13 ((𝐵𝑎) ≠ ∅ → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
145, 13syl 17 . . . . . . . . . . . 12 ((Fun 𝐵𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))
15143exp 1119 . . . . . . . . . . 11 (Fun 𝐵 → (𝑎 ∈ dom 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))))
1615com12 32 . . . . . . . . . 10 (𝑎 ∈ dom 𝐵 → (Fun 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))))
17 fveqdmss.1 . . . . . . . . . 10 𝐷 = dom 𝐵
1816, 17eleq2s 2847 . . . . . . . . 9 (𝑎𝐷 → (Fun 𝐵 → (∅ ∉ ran 𝐵 → ((𝐴𝑎) = (𝐵𝑎) → 𝑎 ∈ dom 𝐴))))
1918com24 95 . . . . . . . 8 (𝑎𝐷 → ((𝐴𝑎) = (𝐵𝑎) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴))))
2019adantr 480 . . . . . . 7 ((𝑎𝐷 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝑎) = (𝐵𝑎) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴))))
214, 20mpd 15 . . . . . 6 ((𝑎𝐷 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴)))
2221ex 412 . . . . 5 (𝑎𝐷 → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → (∅ ∉ ran 𝐵 → (Fun 𝐵𝑎 ∈ dom 𝐴))))
2322com23 86 . . . 4 (𝑎𝐷 → (∅ ∉ ran 𝐵 → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → (Fun 𝐵𝑎 ∈ dom 𝐴))))
2423com14 96 . . 3 (Fun 𝐵 → (∅ ∉ ran 𝐵 → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → (𝑎𝐷𝑎 ∈ dom 𝐴))))
25243imp 1110 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝑎𝐷𝑎 ∈ dom 𝐴))
2625ssrdv 3955 1 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wnel 3030  wral 3045  wss 3917  c0 4299  dom cdm 5641  ran crn 5642  Fun wfun 6508  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  fveqressseq  7054
  Copyright terms: Public domain W3C validator