Proof of Theorem fveqressseq
Step | Hyp | Ref
| Expression |
1 | | fveqdmss.1 |
. . . 4
⊢ 𝐷 = dom 𝐵 |
2 | 1 | fveqdmss 6938 |
. . 3
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → 𝐷 ⊆ dom 𝐴) |
3 | | dmres 5902 |
. . . . 5
⊢ dom
(𝐴 ↾ 𝐷) = (𝐷 ∩ dom 𝐴) |
4 | | incom 4131 |
. . . . . 6
⊢ (𝐷 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐷) |
5 | | sseqin2 4146 |
. . . . . . 7
⊢ (𝐷 ⊆ dom 𝐴 ↔ (dom 𝐴 ∩ 𝐷) = 𝐷) |
6 | 5 | biimpi 215 |
. . . . . 6
⊢ (𝐷 ⊆ dom 𝐴 → (dom 𝐴 ∩ 𝐷) = 𝐷) |
7 | 4, 6 | eqtrid 2790 |
. . . . 5
⊢ (𝐷 ⊆ dom 𝐴 → (𝐷 ∩ dom 𝐴) = 𝐷) |
8 | 3, 7 | eqtrid 2790 |
. . . 4
⊢ (𝐷 ⊆ dom 𝐴 → dom (𝐴 ↾ 𝐷) = 𝐷) |
9 | 8, 1 | eqtrdi 2795 |
. . 3
⊢ (𝐷 ⊆ dom 𝐴 → dom (𝐴 ↾ 𝐷) = dom 𝐵) |
10 | 2, 9 | syl 17 |
. 2
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → dom (𝐴 ↾ 𝐷) = dom 𝐵) |
11 | | fvres 6775 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → ((𝐴 ↾ 𝐷)‘𝑥) = (𝐴‘𝑥)) |
12 | 11 | adantl 481 |
. . . . . . 7
⊢ (((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) → ((𝐴 ↾ 𝐷)‘𝑥) = (𝐴‘𝑥)) |
13 | | id 22 |
. . . . . . 7
⊢ ((𝐴‘𝑥) = (𝐵‘𝑥) → (𝐴‘𝑥) = (𝐵‘𝑥)) |
14 | 12, 13 | sylan9eq 2799 |
. . . . . 6
⊢ ((((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) ∧ (𝐴‘𝑥) = (𝐵‘𝑥)) → ((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥)) |
15 | 14 | ex 412 |
. . . . 5
⊢ (((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) = (𝐵‘𝑥) → ((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥))) |
16 | 15 | ralimdva 3102 |
. . . 4
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) → (∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥) → ∀𝑥 ∈ 𝐷 ((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥))) |
17 | 16 | 3impia 1115 |
. . 3
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → ∀𝑥 ∈ 𝐷 ((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥)) |
18 | 2, 7 | syl 17 |
. . . . 5
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (𝐷 ∩ dom 𝐴) = 𝐷) |
19 | 3, 18 | eqtrid 2790 |
. . . 4
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → dom (𝐴 ↾ 𝐷) = 𝐷) |
20 | 19 | raleqdv 3339 |
. . 3
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (∀𝑥 ∈ dom (𝐴 ↾ 𝐷)((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥) ↔ ∀𝑥 ∈ 𝐷 ((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥))) |
21 | 17, 20 | mpbird 256 |
. 2
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → ∀𝑥 ∈ dom (𝐴 ↾ 𝐷)((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥)) |
22 | | simpll 763 |
. . . . . . . 8
⊢ (((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) → Fun 𝐵) |
23 | 1 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ dom 𝐵) |
24 | 23 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ dom 𝐵) |
25 | 24 | adantl 481 |
. . . . . . . 8
⊢ (((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ dom 𝐵) |
26 | | simplr 765 |
. . . . . . . 8
⊢ (((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) → ∅ ∉ ran 𝐵) |
27 | | nelrnfvne 6937 |
. . . . . . . 8
⊢ ((Fun
𝐵 ∧ 𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵‘𝑥) ≠ ∅) |
28 | 22, 25, 26, 27 | syl3anc 1369 |
. . . . . . 7
⊢ (((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ≠ ∅) |
29 | | neeq1 3005 |
. . . . . . 7
⊢ ((𝐴‘𝑥) = (𝐵‘𝑥) → ((𝐴‘𝑥) ≠ ∅ ↔ (𝐵‘𝑥) ≠ ∅)) |
30 | 28, 29 | syl5ibrcom 246 |
. . . . . 6
⊢ (((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) = (𝐵‘𝑥) → (𝐴‘𝑥) ≠ ∅)) |
31 | 30 | ralimdva 3102 |
. . . . 5
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵) → (∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥) → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ ∅)) |
32 | 31 | 3impia 1115 |
. . . 4
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) ≠ ∅) |
33 | | fvn0ssdmfun 6934 |
. . . . 5
⊢
(∀𝑥 ∈
𝐷 (𝐴‘𝑥) ≠ ∅ → (𝐷 ⊆ dom 𝐴 ∧ Fun (𝐴 ↾ 𝐷))) |
34 | 33 | simprd 495 |
. . . 4
⊢
(∀𝑥 ∈
𝐷 (𝐴‘𝑥) ≠ ∅ → Fun (𝐴 ↾ 𝐷)) |
35 | 32, 34 | syl 17 |
. . 3
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → Fun (𝐴 ↾ 𝐷)) |
36 | | simp1 1134 |
. . 3
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → Fun 𝐵) |
37 | | eqfunfv 6896 |
. . 3
⊢ ((Fun
(𝐴 ↾ 𝐷) ∧ Fun 𝐵) → ((𝐴 ↾ 𝐷) = 𝐵 ↔ (dom (𝐴 ↾ 𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴 ↾ 𝐷)((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥)))) |
38 | 35, 36, 37 | syl2anc 583 |
. 2
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → ((𝐴 ↾ 𝐷) = 𝐵 ↔ (dom (𝐴 ↾ 𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴 ↾ 𝐷)((𝐴 ↾ 𝐷)‘𝑥) = (𝐵‘𝑥)))) |
39 | 10, 21, 38 | mpbir2and 709 |
1
⊢ ((Fun
𝐵 ∧ ∅ ∉ ran
𝐵 ∧ ∀𝑥 ∈ 𝐷 (𝐴‘𝑥) = (𝐵‘𝑥)) → (𝐴 ↾ 𝐷) = 𝐵) |