MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqressseq Structured version   Visualization version   GIF version

Theorem fveqressseq 7054
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1 𝐷 = dom 𝐵
Assertion
Ref Expression
fveqressseq ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷

Proof of Theorem fveqressseq
StepHypRef Expression
1 fveqdmss.1 . . . 4 𝐷 = dom 𝐵
21fveqdmss 7053 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
3 dmres 5986 . . . . 5 dom (𝐴𝐷) = (𝐷 ∩ dom 𝐴)
4 incom 4175 . . . . . 6 (𝐷 ∩ dom 𝐴) = (dom 𝐴𝐷)
5 sseqin2 4189 . . . . . . 7 (𝐷 ⊆ dom 𝐴 ↔ (dom 𝐴𝐷) = 𝐷)
65biimpi 216 . . . . . 6 (𝐷 ⊆ dom 𝐴 → (dom 𝐴𝐷) = 𝐷)
74, 6eqtrid 2777 . . . . 5 (𝐷 ⊆ dom 𝐴 → (𝐷 ∩ dom 𝐴) = 𝐷)
83, 7eqtrid 2777 . . . 4 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = 𝐷)
98, 1eqtrdi 2781 . . 3 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = dom 𝐵)
102, 9syl 17 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = dom 𝐵)
11 fvres 6880 . . . . . . . 8 (𝑥𝐷 → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
1211adantl 481 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
13 id 22 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) = (𝐵𝑥))
1412, 13sylan9eq 2785 . . . . . 6 ((((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) ∧ (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
1514ex 412 . . . . 5 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
1615ralimdva 3146 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
17163impia 1117 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
182, 7syl 17 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐷 ∩ dom 𝐴) = 𝐷)
193, 18eqtrid 2777 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = 𝐷)
2017, 19raleqtrrdv 3305 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))
21 simpll 766 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → Fun 𝐵)
221eleq2i 2821 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ dom 𝐵)
2322biimpi 216 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ dom 𝐵)
2423adantl 481 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → 𝑥 ∈ dom 𝐵)
25 simplr 768 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ∅ ∉ ran 𝐵)
26 nelrnfvne 7052 . . . . . . . 8 ((Fun 𝐵𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵𝑥) ≠ ∅)
2721, 24, 25, 26syl3anc 1373 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → (𝐵𝑥) ≠ ∅)
28 neeq1 2988 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝑥) ≠ ∅ ↔ (𝐵𝑥) ≠ ∅))
2927, 28syl5ibrcom 247 . . . . . 6 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) ≠ ∅))
3029ralimdva 3146 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅))
31303impia 1117 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅)
32 fvn0ssdmfun 7049 . . . . 5 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → (𝐷 ⊆ dom 𝐴 ∧ Fun (𝐴𝐷)))
3332simprd 495 . . . 4 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → Fun (𝐴𝐷))
3431, 33syl 17 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun (𝐴𝐷))
35 simp1 1136 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐵)
36 eqfunfv 7011 . . 3 ((Fun (𝐴𝐷) ∧ Fun 𝐵) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3734, 35, 36syl2anc 584 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3810, 20, 37mpbir2and 713 1 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wnel 3030  wral 3045  cin 3916  wss 3917  c0 4299  dom cdm 5641  ran crn 5642  cres 5643  Fun wfun 6508  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  plusfreseq  48156
  Copyright terms: Public domain W3C validator