MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqressseq Structured version   Visualization version   GIF version

Theorem fveqressseq 7013
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1 𝐷 = dom 𝐵
Assertion
Ref Expression
fveqressseq ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷

Proof of Theorem fveqressseq
StepHypRef Expression
1 fveqdmss.1 . . . 4 𝐷 = dom 𝐵
21fveqdmss 7012 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
3 dmres 5963 . . . . 5 dom (𝐴𝐷) = (𝐷 ∩ dom 𝐴)
4 incom 4160 . . . . . 6 (𝐷 ∩ dom 𝐴) = (dom 𝐴𝐷)
5 sseqin2 4174 . . . . . . 7 (𝐷 ⊆ dom 𝐴 ↔ (dom 𝐴𝐷) = 𝐷)
65biimpi 216 . . . . . 6 (𝐷 ⊆ dom 𝐴 → (dom 𝐴𝐷) = 𝐷)
74, 6eqtrid 2776 . . . . 5 (𝐷 ⊆ dom 𝐴 → (𝐷 ∩ dom 𝐴) = 𝐷)
83, 7eqtrid 2776 . . . 4 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = 𝐷)
98, 1eqtrdi 2780 . . 3 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = dom 𝐵)
102, 9syl 17 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = dom 𝐵)
11 fvres 6841 . . . . . . . 8 (𝑥𝐷 → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
1211adantl 481 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
13 id 22 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) = (𝐵𝑥))
1412, 13sylan9eq 2784 . . . . . 6 ((((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) ∧ (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
1514ex 412 . . . . 5 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
1615ralimdva 3141 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
17163impia 1117 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
182, 7syl 17 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐷 ∩ dom 𝐴) = 𝐷)
193, 18eqtrid 2776 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = 𝐷)
2017, 19raleqtrrdv 3293 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))
21 simpll 766 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → Fun 𝐵)
221eleq2i 2820 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ dom 𝐵)
2322biimpi 216 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ dom 𝐵)
2423adantl 481 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → 𝑥 ∈ dom 𝐵)
25 simplr 768 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ∅ ∉ ran 𝐵)
26 nelrnfvne 7011 . . . . . . . 8 ((Fun 𝐵𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵𝑥) ≠ ∅)
2721, 24, 25, 26syl3anc 1373 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → (𝐵𝑥) ≠ ∅)
28 neeq1 2987 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝑥) ≠ ∅ ↔ (𝐵𝑥) ≠ ∅))
2927, 28syl5ibrcom 247 . . . . . 6 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) ≠ ∅))
3029ralimdva 3141 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅))
31303impia 1117 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅)
32 fvn0ssdmfun 7008 . . . . 5 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → (𝐷 ⊆ dom 𝐴 ∧ Fun (𝐴𝐷)))
3332simprd 495 . . . 4 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → Fun (𝐴𝐷))
3431, 33syl 17 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun (𝐴𝐷))
35 simp1 1136 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐵)
36 eqfunfv 6970 . . 3 ((Fun (𝐴𝐷) ∧ Fun 𝐵) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3734, 35, 36syl2anc 584 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3810, 20, 37mpbir2and 713 1 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  cin 3902  wss 3903  c0 4284  dom cdm 5619  ran crn 5620  cres 5621  Fun wfun 6476  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  plusfreseq  48152
  Copyright terms: Public domain W3C validator