MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqressseq Structured version   Visualization version   GIF version

Theorem fveqressseq 7072
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1 𝐷 = dom 𝐵
Assertion
Ref Expression
fveqressseq ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷

Proof of Theorem fveqressseq
StepHypRef Expression
1 fveqdmss.1 . . . 4 𝐷 = dom 𝐵
21fveqdmss 7071 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
3 dmres 5994 . . . . 5 dom (𝐴𝐷) = (𝐷 ∩ dom 𝐴)
4 incom 4194 . . . . . 6 (𝐷 ∩ dom 𝐴) = (dom 𝐴𝐷)
5 sseqin2 4208 . . . . . . 7 (𝐷 ⊆ dom 𝐴 ↔ (dom 𝐴𝐷) = 𝐷)
65biimpi 215 . . . . . 6 (𝐷 ⊆ dom 𝐴 → (dom 𝐴𝐷) = 𝐷)
74, 6eqtrid 2776 . . . . 5 (𝐷 ⊆ dom 𝐴 → (𝐷 ∩ dom 𝐴) = 𝐷)
83, 7eqtrid 2776 . . . 4 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = 𝐷)
98, 1eqtrdi 2780 . . 3 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = dom 𝐵)
102, 9syl 17 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = dom 𝐵)
11 fvres 6901 . . . . . . . 8 (𝑥𝐷 → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
1211adantl 481 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
13 id 22 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) = (𝐵𝑥))
1412, 13sylan9eq 2784 . . . . . 6 ((((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) ∧ (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
1514ex 412 . . . . 5 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
1615ralimdva 3159 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
17163impia 1114 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
182, 7syl 17 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐷 ∩ dom 𝐴) = 𝐷)
193, 18eqtrid 2776 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = 𝐷)
2019raleqdv 3317 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥) ↔ ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
2117, 20mpbird 257 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))
22 simpll 764 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → Fun 𝐵)
231eleq2i 2817 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ dom 𝐵)
2423biimpi 215 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ dom 𝐵)
2524adantl 481 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → 𝑥 ∈ dom 𝐵)
26 simplr 766 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ∅ ∉ ran 𝐵)
27 nelrnfvne 7070 . . . . . . . 8 ((Fun 𝐵𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵𝑥) ≠ ∅)
2822, 25, 26, 27syl3anc 1368 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → (𝐵𝑥) ≠ ∅)
29 neeq1 2995 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝑥) ≠ ∅ ↔ (𝐵𝑥) ≠ ∅))
3028, 29syl5ibrcom 246 . . . . . 6 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) ≠ ∅))
3130ralimdva 3159 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅))
32313impia 1114 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅)
33 fvn0ssdmfun 7067 . . . . 5 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → (𝐷 ⊆ dom 𝐴 ∧ Fun (𝐴𝐷)))
3433simprd 495 . . . 4 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → Fun (𝐴𝐷))
3532, 34syl 17 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun (𝐴𝐷))
36 simp1 1133 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐵)
37 eqfunfv 7028 . . 3 ((Fun (𝐴𝐷) ∧ Fun 𝐵) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3835, 36, 37syl2anc 583 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3910, 21, 38mpbir2and 710 1 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wnel 3038  wral 3053  cin 3940  wss 3941  c0 4315  dom cdm 5667  ran crn 5668  cres 5669  Fun wfun 6528  cfv 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-fv 6542
This theorem is referenced by:  plusfreseq  47052
  Copyright terms: Public domain W3C validator