MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqressseq Structured version   Visualization version   GIF version

Theorem fveqressseq 7030
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1 𝐷 = dom 𝐵
Assertion
Ref Expression
fveqressseq ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷

Proof of Theorem fveqressseq
StepHypRef Expression
1 fveqdmss.1 . . . 4 𝐷 = dom 𝐵
21fveqdmss 7029 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
3 dmres 5959 . . . . 5 dom (𝐴𝐷) = (𝐷 ∩ dom 𝐴)
4 incom 4161 . . . . . 6 (𝐷 ∩ dom 𝐴) = (dom 𝐴𝐷)
5 sseqin2 4175 . . . . . . 7 (𝐷 ⊆ dom 𝐴 ↔ (dom 𝐴𝐷) = 𝐷)
65biimpi 215 . . . . . 6 (𝐷 ⊆ dom 𝐴 → (dom 𝐴𝐷) = 𝐷)
74, 6eqtrid 2788 . . . . 5 (𝐷 ⊆ dom 𝐴 → (𝐷 ∩ dom 𝐴) = 𝐷)
83, 7eqtrid 2788 . . . 4 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = 𝐷)
98, 1eqtrdi 2792 . . 3 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = dom 𝐵)
102, 9syl 17 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = dom 𝐵)
11 fvres 6861 . . . . . . . 8 (𝑥𝐷 → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
1211adantl 482 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
13 id 22 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) = (𝐵𝑥))
1412, 13sylan9eq 2796 . . . . . 6 ((((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) ∧ (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
1514ex 413 . . . . 5 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
1615ralimdva 3164 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
17163impia 1117 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
182, 7syl 17 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐷 ∩ dom 𝐴) = 𝐷)
193, 18eqtrid 2788 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = 𝐷)
2019raleqdv 3313 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥) ↔ ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
2117, 20mpbird 256 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))
22 simpll 765 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → Fun 𝐵)
231eleq2i 2829 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ dom 𝐵)
2423biimpi 215 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ dom 𝐵)
2524adantl 482 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → 𝑥 ∈ dom 𝐵)
26 simplr 767 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ∅ ∉ ran 𝐵)
27 nelrnfvne 7028 . . . . . . . 8 ((Fun 𝐵𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵𝑥) ≠ ∅)
2822, 25, 26, 27syl3anc 1371 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → (𝐵𝑥) ≠ ∅)
29 neeq1 3006 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝑥) ≠ ∅ ↔ (𝐵𝑥) ≠ ∅))
3028, 29syl5ibrcom 246 . . . . . 6 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) ≠ ∅))
3130ralimdva 3164 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅))
32313impia 1117 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅)
33 fvn0ssdmfun 7025 . . . . 5 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → (𝐷 ⊆ dom 𝐴 ∧ Fun (𝐴𝐷)))
3433simprd 496 . . . 4 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → Fun (𝐴𝐷))
3532, 34syl 17 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun (𝐴𝐷))
36 simp1 1136 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐵)
37 eqfunfv 6987 . . 3 ((Fun (𝐴𝐷) ∧ Fun 𝐵) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3835, 36, 37syl2anc 584 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3910, 21, 38mpbir2and 711 1 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wnel 3049  wral 3064  cin 3909  wss 3910  c0 4282  dom cdm 5633  ran crn 5634  cres 5635  Fun wfun 6490  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-fv 6504
This theorem is referenced by:  plusfreseq  46056
  Copyright terms: Public domain W3C validator