MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqressseq Structured version   Visualization version   GIF version

Theorem fveqressseq 6839
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1 𝐷 = dom 𝐵
Assertion
Ref Expression
fveqressseq ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷

Proof of Theorem fveqressseq
StepHypRef Expression
1 fveqdmss.1 . . . 4 𝐷 = dom 𝐵
21fveqdmss 6838 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → 𝐷 ⊆ dom 𝐴)
3 dmres 5868 . . . . 5 dom (𝐴𝐷) = (𝐷 ∩ dom 𝐴)
4 incom 4175 . . . . . 6 (𝐷 ∩ dom 𝐴) = (dom 𝐴𝐷)
5 sseqin2 4189 . . . . . . 7 (𝐷 ⊆ dom 𝐴 ↔ (dom 𝐴𝐷) = 𝐷)
65biimpi 217 . . . . . 6 (𝐷 ⊆ dom 𝐴 → (dom 𝐴𝐷) = 𝐷)
74, 6syl5eq 2865 . . . . 5 (𝐷 ⊆ dom 𝐴 → (𝐷 ∩ dom 𝐴) = 𝐷)
83, 7syl5eq 2865 . . . 4 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = 𝐷)
98, 1syl6eq 2869 . . 3 (𝐷 ⊆ dom 𝐴 → dom (𝐴𝐷) = dom 𝐵)
102, 9syl 17 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = dom 𝐵)
11 fvres 6682 . . . . . . . 8 (𝑥𝐷 → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
1211adantl 482 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝐷)‘𝑥) = (𝐴𝑥))
13 id 22 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) = (𝐵𝑥))
1412, 13sylan9eq 2873 . . . . . 6 ((((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) ∧ (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
1514ex 413 . . . . 5 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
1615ralimdva 3174 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
17163impia 1109 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥))
182, 7syl 17 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐷 ∩ dom 𝐴) = 𝐷)
193, 18syl5eq 2865 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → dom (𝐴𝐷) = 𝐷)
2019raleqdv 3413 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥) ↔ ∀𝑥𝐷 ((𝐴𝐷)‘𝑥) = (𝐵𝑥)))
2117, 20mpbird 258 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))
22 simpll 763 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → Fun 𝐵)
231eleq2i 2901 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ dom 𝐵)
2423biimpi 217 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ dom 𝐵)
2524adantl 482 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → 𝑥 ∈ dom 𝐵)
26 simplr 765 . . . . . . . 8 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ∅ ∉ ran 𝐵)
27 nelrnfvne 6837 . . . . . . . 8 ((Fun 𝐵𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵) → (𝐵𝑥) ≠ ∅)
2822, 25, 26, 27syl3anc 1363 . . . . . . 7 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → (𝐵𝑥) ≠ ∅)
29 neeq1 3075 . . . . . . 7 ((𝐴𝑥) = (𝐵𝑥) → ((𝐴𝑥) ≠ ∅ ↔ (𝐵𝑥) ≠ ∅))
3028, 29syl5ibrcom 248 . . . . . 6 (((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) ∧ 𝑥𝐷) → ((𝐴𝑥) = (𝐵𝑥) → (𝐴𝑥) ≠ ∅))
3130ralimdva 3174 . . . . 5 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵) → (∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅))
32313impia 1109 . . . 4 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ∀𝑥𝐷 (𝐴𝑥) ≠ ∅)
33 fvn0ssdmfun 6834 . . . . 5 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → (𝐷 ⊆ dom 𝐴 ∧ Fun (𝐴𝐷)))
3433simprd 496 . . . 4 (∀𝑥𝐷 (𝐴𝑥) ≠ ∅ → Fun (𝐴𝐷))
3532, 34syl 17 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun (𝐴𝐷))
36 simp1 1128 . . 3 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → Fun 𝐵)
37 eqfunfv 6799 . . 3 ((Fun (𝐴𝐷) ∧ Fun 𝐵) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3835, 36, 37syl2anc 584 . 2 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → ((𝐴𝐷) = 𝐵 ↔ (dom (𝐴𝐷) = dom 𝐵 ∧ ∀𝑥 ∈ dom (𝐴𝐷)((𝐴𝐷)‘𝑥) = (𝐵𝑥))))
3910, 21, 38mpbir2and 709 1 ((Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀𝑥𝐷 (𝐴𝑥) = (𝐵𝑥)) → (𝐴𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wnel 3120  wral 3135  cin 3932  wss 3933  c0 4288  dom cdm 5548  ran crn 5549  cres 5550  Fun wfun 6342  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356
This theorem is referenced by:  plusfreseq  43916
  Copyright terms: Public domain W3C validator