Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzn0bi | Structured version Visualization version GIF version |
Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
uzn0bi | ⊢ ((ℤ≥‘𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uz0 42842 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((ℤ≥‘𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → (ℤ≥‘𝑀) = ∅) |
3 | neneq 2948 | . . . 4 ⊢ ((ℤ≥‘𝑀) ≠ ∅ → ¬ (ℤ≥‘𝑀) = ∅) | |
4 | 3 | adantr 480 | . . 3 ⊢ (((ℤ≥‘𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → ¬ (ℤ≥‘𝑀) = ∅) |
5 | 2, 4 | condan 814 | . 2 ⊢ ((ℤ≥‘𝑀) ≠ ∅ → 𝑀 ∈ ℤ) |
6 | id 22 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
7 | eqid 2738 | . . 3 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
8 | 6, 7 | uzn0d 42855 | . 2 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ≠ ∅) |
9 | 5, 8 | impbii 208 | 1 ⊢ ((ℤ≥‘𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |