Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzn0bi Structured version   Visualization version   GIF version

Theorem uzn0bi 45462
Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
uzn0bi ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)

Proof of Theorem uzn0bi
StepHypRef Expression
1 uz0 45415 . . . 4 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
21adantl 481 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → (ℤ𝑀) = ∅)
3 neneq 2932 . . . 4 ((ℤ𝑀) ≠ ∅ → ¬ (ℤ𝑀) = ∅)
43adantr 480 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → ¬ (ℤ𝑀) = ∅)
52, 4condan 817 . 2 ((ℤ𝑀) ≠ ∅ → 𝑀 ∈ ℤ)
6 id 22 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
7 eqid 2730 . . 3 (ℤ𝑀) = (ℤ𝑀)
86, 7uzn0d 45428 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≠ ∅)
95, 8impbii 209 1 ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wne 2926  c0 4299  cfv 6514  cz 12536  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator