Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzn0bi Structured version   Visualization version   GIF version

Theorem uzn0bi 42999
Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
uzn0bi ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)

Proof of Theorem uzn0bi
StepHypRef Expression
1 uz0 42952 . . . 4 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
21adantl 482 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → (ℤ𝑀) = ∅)
3 neneq 2949 . . . 4 ((ℤ𝑀) ≠ ∅ → ¬ (ℤ𝑀) = ∅)
43adantr 481 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → ¬ (ℤ𝑀) = ∅)
52, 4condan 815 . 2 ((ℤ𝑀) ≠ ∅ → 𝑀 ∈ ℤ)
6 id 22 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
7 eqid 2738 . . 3 (ℤ𝑀) = (ℤ𝑀)
86, 7uzn0d 42965 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≠ ∅)
95, 8impbii 208 1 ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2106  wne 2943  c0 4256  cfv 6433  cz 12319  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-uz 12583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator