Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzn0bi Structured version   Visualization version   GIF version

Theorem uzn0bi 45455
Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
uzn0bi ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)

Proof of Theorem uzn0bi
StepHypRef Expression
1 uz0 45408 . . . 4 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
21adantl 481 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → (ℤ𝑀) = ∅)
3 neneq 2931 . . . 4 ((ℤ𝑀) ≠ ∅ → ¬ (ℤ𝑀) = ∅)
43adantr 480 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → ¬ (ℤ𝑀) = ∅)
52, 4condan 817 . 2 ((ℤ𝑀) ≠ ∅ → 𝑀 ∈ ℤ)
6 id 22 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
7 eqid 2729 . . 3 (ℤ𝑀) = (ℤ𝑀)
86, 7uzn0d 45421 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≠ ∅)
95, 8impbii 209 1 ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wne 2925  c0 4296  cfv 6511  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator