Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzn0bi Structured version   Visualization version   GIF version

Theorem uzn0bi 44722
Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
uzn0bi ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)

Proof of Theorem uzn0bi
StepHypRef Expression
1 uz0 44675 . . . 4 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
21adantl 481 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → (ℤ𝑀) = ∅)
3 neneq 2940 . . . 4 ((ℤ𝑀) ≠ ∅ → ¬ (ℤ𝑀) = ∅)
43adantr 480 . . 3 (((ℤ𝑀) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ) → ¬ (ℤ𝑀) = ∅)
52, 4condan 815 . 2 ((ℤ𝑀) ≠ ∅ → 𝑀 ∈ ℤ)
6 id 22 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
7 eqid 2726 . . 3 (ℤ𝑀) = (ℤ𝑀)
86, 7uzn0d 44688 . 2 (𝑀 ∈ ℤ → (ℤ𝑀) ≠ ∅)
95, 8impbii 208 1 ((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  wne 2934  c0 4317  cfv 6536  cz 12559  cuz 12823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-neg 11448  df-z 12560  df-uz 12824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator