| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉)) |
| 2 | 1 | 3adant3 1133 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉)) |
| 3 | 2 | adantr 480 |
. . . . 5
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉)) |
| 4 | | id 22 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑊 → 𝑍 ∈ 𝑊) |
| 5 | 4, 4 | jca 511 |
. . . . . . 7
⊢ (𝑍 ∈ 𝑊 → (𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊)) |
| 6 | 5 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊)) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊)) |
| 8 | | simpr 484 |
. . . . 5
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) |
| 9 | 3, 7, 8 | 3jca 1129 |
. . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌)) |
| 10 | | funprg 6620 |
. . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → Fun {〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}) |
| 11 | 9, 10 | syl 17 |
. . 3
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → Fun {〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}) |
| 12 | | fpropnf1.f |
. . . 4
⊢ 𝐹 = {〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉} |
| 13 | 12 | funeqi 6587 |
. . 3
⊢ (Fun
𝐹 ↔ Fun {〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}) |
| 14 | 11, 13 | sylibr 234 |
. 2
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → Fun 𝐹) |
| 15 | | neneq 2946 |
. . . 4
⊢ (𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌) |
| 16 | 15 | adantl 481 |
. . 3
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 17 | | fprg 7175 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ (𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}:{𝑋, 𝑌}⟶{𝑍, 𝑍}) |
| 18 | 9, 17 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}:{𝑋, 𝑌}⟶{𝑍, 𝑍}) |
| 19 | 12 | eqcomi 2746 |
. . . . . 6
⊢
{〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉} = 𝐹 |
| 20 | 19 | feq1i 6727 |
. . . . 5
⊢
({〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}:{𝑋, 𝑌}⟶{𝑍, 𝑍} ↔ 𝐹:{𝑋, 𝑌}⟶{𝑍, 𝑍}) |
| 21 | 18, 20 | sylib 218 |
. . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → 𝐹:{𝑋, 𝑌}⟶{𝑍, 𝑍}) |
| 22 | | df-f1 6566 |
. . . . 5
⊢ (𝐹:{𝑋, 𝑌}–1-1→{𝑍, 𝑍} ↔ (𝐹:{𝑋, 𝑌}⟶{𝑍, 𝑍} ∧ Fun ◡𝐹)) |
| 23 | | dff13 7275 |
. . . . . 6
⊢ (𝐹:{𝑋, 𝑌}–1-1→{𝑍, 𝑍} ↔ (𝐹:{𝑋, 𝑌}⟶{𝑍, 𝑍} ∧ ∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 24 | | fveqeq2 6915 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑋) = (𝐹‘𝑦))) |
| 25 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) |
| 26 | 24, 25 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦))) |
| 27 | 26 | ralbidv 3178 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦))) |
| 28 | | fveqeq2 6915 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑌 → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑌) = (𝐹‘𝑦))) |
| 29 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑌 → (𝑥 = 𝑦 ↔ 𝑌 = 𝑦)) |
| 30 | 28, 29 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑌 → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦))) |
| 31 | 30 | ralbidv 3178 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑌 → (∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦))) |
| 32 | 27, 31 | ralprg 4696 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ∧ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦)))) |
| 33 | 32 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ∧ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦)))) |
| 34 | 33 | adantr 480 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ∧ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦)))) |
| 35 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 36 | 35 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑋) = (𝐹‘𝑦) ↔ (𝐹‘𝑋) = (𝐹‘𝑋))) |
| 37 | | eqeq2 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑋 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑋)) |
| 38 | 36, 37 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → (((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ↔ ((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋 = 𝑋))) |
| 39 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 40 | 39 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) = (𝐹‘𝑦) ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) |
| 41 | | eqeq2 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) |
| 42 | 40, 41 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ↔ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
| 43 | 38, 42 | ralprg 4696 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ↔ (((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋 = 𝑋) ∧ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))) |
| 44 | 35 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑌) = (𝐹‘𝑦) ↔ (𝐹‘𝑌) = (𝐹‘𝑋))) |
| 45 | | eqeq2 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑋 → (𝑌 = 𝑦 ↔ 𝑌 = 𝑋)) |
| 46 | 44, 45 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → (((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦) ↔ ((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋))) |
| 47 | 39 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → ((𝐹‘𝑌) = (𝐹‘𝑦) ↔ (𝐹‘𝑌) = (𝐹‘𝑌))) |
| 48 | | eqeq2 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → (𝑌 = 𝑦 ↔ 𝑌 = 𝑌)) |
| 49 | 47, 48 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦) ↔ ((𝐹‘𝑌) = (𝐹‘𝑌) → 𝑌 = 𝑌))) |
| 50 | 46, 49 | ralprg 4696 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦) ↔ (((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋) ∧ ((𝐹‘𝑌) = (𝐹‘𝑌) → 𝑌 = 𝑌)))) |
| 51 | 43, 50 | anbi12d 632 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ((∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ∧ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦)) ↔ ((((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋 = 𝑋) ∧ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) ∧ (((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋) ∧ ((𝐹‘𝑌) = (𝐹‘𝑌) → 𝑌 = 𝑌))))) |
| 52 | 51 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ∧ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦)) ↔ ((((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋 = 𝑋) ∧ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) ∧ (((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋) ∧ ((𝐹‘𝑌) = (𝐹‘𝑌) → 𝑌 = 𝑌))))) |
| 53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ∧ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦)) ↔ ((((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋 = 𝑋) ∧ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) ∧ (((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋) ∧ ((𝐹‘𝑌) = (𝐹‘𝑌) → 𝑌 = 𝑌))))) |
| 54 | 12 | fveq1i 6907 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑋) = ({〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}‘𝑋) |
| 55 | | 3simpb 1150 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊)) |
| 56 | 55 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌)) |
| 57 | | df-3an 1089 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌)) |
| 58 | 56, 57 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌)) |
| 59 | | fvpr1g 7210 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}‘𝑋) = 𝑍) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}‘𝑋) = 𝑍) |
| 61 | 54, 60 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝐹‘𝑋) = 𝑍) |
| 62 | 12 | fveq1i 6907 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑌) = ({〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}‘𝑌) |
| 63 | | 3simpc 1151 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) |
| 64 | 63 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌)) |
| 65 | | df-3an 1089 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ ((𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌)) |
| 66 | 64, 65 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌)) |
| 67 | | fvpr2g 7211 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}‘𝑌) = 𝑍) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝑍〉, 〈𝑌, 𝑍〉}‘𝑌) = 𝑍) |
| 69 | 62, 68 | eqtr2id 2790 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → 𝑍 = (𝐹‘𝑌)) |
| 70 | 61, 69 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝐹‘𝑋) = (𝐹‘𝑌)) |
| 71 | | idd 24 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝑋 = 𝑌 → 𝑋 = 𝑌)) |
| 72 | 70, 71 | embantd 59 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌) → 𝑋 = 𝑌)) |
| 73 | 72 | adantld 490 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋 = 𝑋) ∧ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) → 𝑋 = 𝑌)) |
| 74 | 73 | adantrd 491 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (((((𝐹‘𝑋) = (𝐹‘𝑋) → 𝑋 = 𝑋) ∧ ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) ∧ (((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋) ∧ ((𝐹‘𝑌) = (𝐹‘𝑌) → 𝑌 = 𝑌))) → 𝑋 = 𝑌)) |
| 75 | 53, 74 | sylbid 240 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑋) = (𝐹‘𝑦) → 𝑋 = 𝑦) ∧ ∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑌) = (𝐹‘𝑦) → 𝑌 = 𝑦)) → 𝑋 = 𝑌)) |
| 76 | 34, 75 | sylbid 240 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) → 𝑋 = 𝑌)) |
| 77 | 76 | adantld 490 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((𝐹:{𝑋, 𝑌}⟶{𝑍, 𝑍} ∧ ∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ {𝑋, 𝑌} ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) → 𝑋 = 𝑌)) |
| 78 | 23, 77 | biimtrid 242 |
. . . . 5
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (𝐹:{𝑋, 𝑌}–1-1→{𝑍, 𝑍} → 𝑋 = 𝑌)) |
| 79 | 22, 78 | biimtrrid 243 |
. . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ((𝐹:{𝑋, 𝑌}⟶{𝑍, 𝑍} ∧ Fun ◡𝐹) → 𝑋 = 𝑌)) |
| 80 | 21, 79 | mpand 695 |
. . 3
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (Fun ◡𝐹 → 𝑋 = 𝑌)) |
| 81 | 16, 80 | mtod 198 |
. 2
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → ¬ Fun ◡𝐹) |
| 82 | 14, 81 | jca 511 |
1
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑋 ≠ 𝑌) → (Fun 𝐹 ∧ ¬ Fun ◡𝐹)) |