Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgcoscmulx Structured version   Visualization version   GIF version

Theorem itgcoscmulx 45967
Description: Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgcoscmulx.a (𝜑𝐴 ∈ ℂ)
itgcoscmulx.b (𝜑𝐵 ∈ ℝ)
itgcoscmulx.c (𝜑𝐶 ∈ ℝ)
itgcoscmulx.blec (𝜑𝐵𝐶)
itgcoscmulx.an0 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
itgcoscmulx (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgcoscmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcoscmulx.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2 itgcoscmulx.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
31, 2iccssred 13395 . . . . . . . . . 10 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
43resmptd 6011 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
54eqcomd 2735 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)))
65oveq2d 7403 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))))
7 ax-resscn 11125 . . . . . . . . 9 ℝ ⊆ ℂ
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
98sselda 3946 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
10 itgcoscmulx.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
1110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
12 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
1311, 12mulcld 11194 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
1413sincld 16098 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
15 itgcoscmulx.an0 . . . . . . . . . . . 12 (𝜑𝐴 ≠ 0)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
1714, 11, 16divcld 11958 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
189, 17syldan 591 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
1918fmpttd 7087 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ)
20 ssidd 3970 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
21 eqid 2729 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 tgioo4 24693 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2321, 22dvres 25812 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐵[,]𝐶) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
248, 19, 20, 3, 23syl22anc 838 . . . . . . 7 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
25 reelprrecn 11160 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
279, 14syldan 591 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
2810adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
2928, 9mulcld 11194 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐴 · 𝑦) ∈ ℂ)
3029coscld 16099 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
3128, 30mulcld 11194 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
328resmptd 6011 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))))
3332eqcomd 2735 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))) = ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ))
3433oveq2d 7403 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)))
3514fmpttd 7087 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ)
36 ssidd 3970 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
37 dvsinax 45911 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3810, 37syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3938dmeqd 5869 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
4013coscld 16099 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
4111, 40mulcld 11194 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
4241ralrimiva 3125 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
43 dmmptg 6215 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4539, 44eqtr2d 2765 . . . . . . . . . . . . . 14 (𝜑 → ℂ = dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
467, 45sseqtrid 3989 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
47 dvres3 25814 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4826, 35, 36, 46, 47syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4938reseq1d 5949 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ))
508resmptd 6011 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5148, 49, 503eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5234, 51eqtrd 2764 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5326, 27, 31, 52, 10, 15dvmptdivc 25869 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
54 iccntr 24710 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
551, 2, 54syl2anc 584 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
5653, 55reseq12d 5951 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)))
57 ioossre 13368 . . . . . . . . 9 (𝐵(,)𝐶) ⊆ ℝ
58 resmpt 6008 . . . . . . . . 9 ((𝐵(,)𝐶) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
5957, 58mp1i 13 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
60 elioore 13336 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℝ)
6160recnd 11202 . . . . . . . . . . 11 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℂ)
6261, 40sylan2 593 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
6310adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
6415adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ≠ 0)
6562, 63, 64divcan3d 11963 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴) = (cos‘(𝐴 · 𝑦)))
6665mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6756, 59, 663eqtrd 2768 . . . . . . 7 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
686, 24, 673eqtrd 2768 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6968adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
70 oveq2 7395 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
7170fveq2d 6862 . . . . . 6 (𝑦 = 𝑥 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
7271adantl 481 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
73 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
7410adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
7557, 8sstrid 3958 . . . . . . . 8 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
7675sselda 3946 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
7774, 76mulcld 11194 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
7877coscld 16099 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) ∈ ℂ)
7969, 72, 73, 78fvmptd 6975 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = (cos‘(𝐴 · 𝑥)))
8079eqcomd 2735 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
8180itgeq2dv 25683 . 2 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
82 eqidd 2730 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
83 oveq2 7395 . . . . . . . 8 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
8483fveq2d 6862 . . . . . . 7 (𝑦 = 𝐶 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐶)))
8584oveq1d 7402 . . . . . 6 (𝑦 = 𝐶 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
8685adantl 481 . . . . 5 ((𝜑𝑦 = 𝐶) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
871rexrd 11224 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
882rexrd 11224 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
89 itgcoscmulx.blec . . . . . 6 (𝜑𝐵𝐶)
90 ubicc2 13426 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9187, 88, 89, 90syl3anc 1373 . . . . 5 (𝜑𝐶 ∈ (𝐵[,]𝐶))
922recnd 11202 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
9310, 92mulcld 11194 . . . . . . 7 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
9493sincld 16098 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐶)) ∈ ℂ)
9594, 10, 15divcld 11958 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
9682, 86, 91, 95fvmptd 6975 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
97 oveq2 7395 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
9897fveq2d 6862 . . . . . . 7 (𝑦 = 𝐵 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐵)))
9998oveq1d 7402 . . . . . 6 (𝑦 = 𝐵 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10099adantl 481 . . . . 5 ((𝜑𝑦 = 𝐵) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
101 lbicc2 13425 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10287, 88, 89, 101syl3anc 1373 . . . . 5 (𝜑𝐵 ∈ (𝐵[,]𝐶))
1031recnd 11202 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
10410, 103mulcld 11194 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
105104sincld 16098 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐵)) ∈ ℂ)
106105, 10, 15divcld 11958 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
10782, 100, 102, 106fvmptd 6975 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10896, 107oveq12d 7405 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
109 coscn 26355 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
110109a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
11175, 10, 36constcncfg 45870 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11275, 36idcncfg 45871 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
113111, 112mulcncf 25346 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
114110, 113cncfmpt1f 24807 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11568, 114eqeltrd 2828 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
116 ioossicc 13394 . . . . . . 7 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
117116a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
118 ioombl 25466 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
119118a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
12010adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
1213, 7sstrdi 3959 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
122121sselda 3946 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
123120, 122mulcld 11194 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
124123coscld 16099 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
125121, 10, 36constcncfg 45870 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
126121, 36idcncfg 45871 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
127125, 126mulcncf 25346 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
128110, 127cncfmpt1f 24807 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
129 cniccibl 25742 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
1301, 2, 128, 129syl3anc 1373 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
131117, 119, 124, 130iblss 25706 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
13268, 131eqeltrd 2828 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
133 sincn 26354 . . . . . . 7 sin ∈ (ℂ–cn→ℂ)
134133a1i 11 . . . . . 6 (𝜑 → sin ∈ (ℂ–cn→ℂ))
135134, 127cncfmpt1f 24807 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
136 neneq 2931 . . . . . . . 8 (𝐴 ≠ 0 → ¬ 𝐴 = 0)
137 elsni 4606 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
138137con3i 154 . . . . . . . 8 𝐴 = 0 → ¬ 𝐴 ∈ {0})
13915, 136, 1383syl 18 . . . . . . 7 (𝜑 → ¬ 𝐴 ∈ {0})
14010, 139eldifd 3925 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ {0}))
141 difssd 4100 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
142121, 140, 141constcncfg 45870 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
143135, 142divcncf 25348 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
1441, 2, 89, 115, 132, 143ftc2 25951 . . 3 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
14594, 105, 10, 15divsubdird 11997 . . 3 (𝜑 → (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
146108, 144, 1453eqtr4d 2774 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
14781, 146eqtrd 2764 1 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  wss 3914  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   · cmul 11073  *cxr 11207  cle 11209  cmin 11405   / cdiv 11835  (,)cioo 13306  [,]cicc 13309  sincsin 16029  cosccos 16030  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  intcnt 22904  cnccncf 24769  volcvol 25364  𝐿1cibl 25518  citg 25519   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768
This theorem is referenced by:  sqwvfoura  46226
  Copyright terms: Public domain W3C validator