Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgcoscmulx Structured version   Visualization version   GIF version

Theorem itgcoscmulx 45270
Description: Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgcoscmulx.a (𝜑𝐴 ∈ ℂ)
itgcoscmulx.b (𝜑𝐵 ∈ ℝ)
itgcoscmulx.c (𝜑𝐶 ∈ ℝ)
itgcoscmulx.blec (𝜑𝐵𝐶)
itgcoscmulx.an0 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
itgcoscmulx (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgcoscmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcoscmulx.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2 itgcoscmulx.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
31, 2iccssred 13429 . . . . . . . . . 10 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
43resmptd 6038 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
54eqcomd 2733 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)))
65oveq2d 7430 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))))
7 ax-resscn 11181 . . . . . . . . 9 ℝ ⊆ ℂ
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
98sselda 3978 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
10 itgcoscmulx.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
1110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
12 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
1311, 12mulcld 11250 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
1413sincld 16092 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
15 itgcoscmulx.an0 . . . . . . . . . . . 12 (𝜑𝐴 ≠ 0)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
1714, 11, 16divcld 12006 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
189, 17syldan 590 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
1918fmpttd 7119 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ)
20 ssidd 4001 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
21 eqid 2727 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 tgioo4 44871 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2321, 22dvres 25814 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐵[,]𝐶) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
248, 19, 20, 3, 23syl22anc 838 . . . . . . 7 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
25 reelprrecn 11216 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
279, 14syldan 590 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
2810adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
2928, 9mulcld 11250 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐴 · 𝑦) ∈ ℂ)
3029coscld 16093 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
3128, 30mulcld 11250 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
328resmptd 6038 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))))
3332eqcomd 2733 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))) = ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ))
3433oveq2d 7430 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)))
3514fmpttd 7119 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ)
36 ssidd 4001 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
37 dvsinax 45214 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3810, 37syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3938dmeqd 5902 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
4013coscld 16093 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
4111, 40mulcld 11250 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
4241ralrimiva 3141 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
43 dmmptg 6240 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4539, 44eqtr2d 2768 . . . . . . . . . . . . . 14 (𝜑 → ℂ = dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
467, 45sseqtrid 4030 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
47 dvres3 25816 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4826, 35, 36, 46, 47syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4938reseq1d 5978 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ))
508resmptd 6038 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5148, 49, 503eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5234, 51eqtrd 2767 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5326, 27, 31, 52, 10, 15dvmptdivc 25871 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
54 iccntr 24711 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
551, 2, 54syl2anc 583 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
5653, 55reseq12d 5980 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)))
57 ioossre 13403 . . . . . . . . 9 (𝐵(,)𝐶) ⊆ ℝ
58 resmpt 6035 . . . . . . . . 9 ((𝐵(,)𝐶) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
5957, 58mp1i 13 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
60 elioore 13372 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℝ)
6160recnd 11258 . . . . . . . . . . 11 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℂ)
6261, 40sylan2 592 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
6310adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
6415adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ≠ 0)
6562, 63, 64divcan3d 12011 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴) = (cos‘(𝐴 · 𝑦)))
6665mpteq2dva 5242 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6756, 59, 663eqtrd 2771 . . . . . . 7 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
686, 24, 673eqtrd 2771 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6968adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
70 oveq2 7422 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
7170fveq2d 6895 . . . . . 6 (𝑦 = 𝑥 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
7271adantl 481 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
73 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
7410adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
7557, 8sstrid 3989 . . . . . . . 8 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
7675sselda 3978 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
7774, 76mulcld 11250 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
7877coscld 16093 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) ∈ ℂ)
7969, 72, 73, 78fvmptd 7006 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = (cos‘(𝐴 · 𝑥)))
8079eqcomd 2733 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
8180itgeq2dv 25685 . 2 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
82 eqidd 2728 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
83 oveq2 7422 . . . . . . . 8 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
8483fveq2d 6895 . . . . . . 7 (𝑦 = 𝐶 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐶)))
8584oveq1d 7429 . . . . . 6 (𝑦 = 𝐶 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
8685adantl 481 . . . . 5 ((𝜑𝑦 = 𝐶) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
871rexrd 11280 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
882rexrd 11280 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
89 itgcoscmulx.blec . . . . . 6 (𝜑𝐵𝐶)
90 ubicc2 13460 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9187, 88, 89, 90syl3anc 1369 . . . . 5 (𝜑𝐶 ∈ (𝐵[,]𝐶))
922recnd 11258 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
9310, 92mulcld 11250 . . . . . . 7 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
9493sincld 16092 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐶)) ∈ ℂ)
9594, 10, 15divcld 12006 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
9682, 86, 91, 95fvmptd 7006 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
97 oveq2 7422 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
9897fveq2d 6895 . . . . . . 7 (𝑦 = 𝐵 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐵)))
9998oveq1d 7429 . . . . . 6 (𝑦 = 𝐵 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10099adantl 481 . . . . 5 ((𝜑𝑦 = 𝐵) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
101 lbicc2 13459 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10287, 88, 89, 101syl3anc 1369 . . . . 5 (𝜑𝐵 ∈ (𝐵[,]𝐶))
1031recnd 11258 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
10410, 103mulcld 11250 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
105104sincld 16092 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐵)) ∈ ℂ)
106105, 10, 15divcld 12006 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
10782, 100, 102, 106fvmptd 7006 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10896, 107oveq12d 7432 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
109 coscn 26356 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
110109a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
11175, 10, 36constcncfg 45173 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11275, 36idcncfg 45174 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
113111, 112mulcncf 25348 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
114110, 113cncfmpt1f 24808 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11568, 114eqeltrd 2828 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
116 ioossicc 13428 . . . . . . 7 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
117116a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
118 ioombl 25468 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
119118a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
12010adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
1213, 7sstrdi 3990 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
122121sselda 3978 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
123120, 122mulcld 11250 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
124123coscld 16093 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
125121, 10, 36constcncfg 45173 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
126121, 36idcncfg 45174 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
127125, 126mulcncf 25348 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
128110, 127cncfmpt1f 24808 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
129 cniccibl 25744 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
1301, 2, 128, 129syl3anc 1369 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
131117, 119, 124, 130iblss 25708 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
13268, 131eqeltrd 2828 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
133 sincn 26355 . . . . . . 7 sin ∈ (ℂ–cn→ℂ)
134133a1i 11 . . . . . 6 (𝜑 → sin ∈ (ℂ–cn→ℂ))
135134, 127cncfmpt1f 24808 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
136 neneq 2941 . . . . . . . 8 (𝐴 ≠ 0 → ¬ 𝐴 = 0)
137 elsni 4641 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
138137con3i 154 . . . . . . . 8 𝐴 = 0 → ¬ 𝐴 ∈ {0})
13915, 136, 1383syl 18 . . . . . . 7 (𝜑 → ¬ 𝐴 ∈ {0})
14010, 139eldifd 3955 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ {0}))
141 difssd 4128 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
142121, 140, 141constcncfg 45173 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
143135, 142divcncf 25350 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
1441, 2, 89, 115, 132, 143ftc2 25953 . . 3 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
14594, 105, 10, 15divsubdird 12045 . . 3 (𝜑 → (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
146108, 144, 1453eqtr4d 2777 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
14781, 146eqtrd 2767 1 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  wral 3056  cdif 3941  wss 3944  {csn 4624  {cpr 4626   class class class wbr 5142  cmpt 5225  dom cdm 5672  ran crn 5673  cres 5674  wf 6538  cfv 6542  (class class class)co 7414  cc 11122  cr 11123  0cc0 11124   · cmul 11129  *cxr 11263  cle 11265  cmin 11460   / cdiv 11887  (,)cioo 13342  [,]cicc 13345  sincsin 16025  cosccos 16026  TopOpenctopn 17388  topGenctg 17404  fldccnfld 21259  intcnt 22895  cnccncf 24770  volcvol 25366  𝐿1cibl 25520  citg 25521   D cdv 25766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cc 10444  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-symdif 4238  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-ofr 7678  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8716  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-fi 9420  df-sup 9451  df-inf 9452  df-oi 9519  df-dju 9910  df-card 9948  df-acn 9951  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-q 12949  df-rp 12993  df-xneg 13110  df-xadd 13111  df-xmul 13112  df-ioo 13346  df-ioc 13347  df-ico 13348  df-icc 13349  df-fz 13503  df-fzo 13646  df-fl 13775  df-mod 13853  df-seq 13985  df-exp 14045  df-fac 14251  df-bc 14280  df-hash 14308  df-shft 15032  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-limsup 15433  df-clim 15450  df-rlim 15451  df-sum 15651  df-ef 16029  df-sin 16031  df-cos 16032  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-hom 17242  df-cco 17243  df-rest 17389  df-topn 17390  df-0g 17408  df-gsum 17409  df-topgen 17410  df-pt 17411  df-prds 17414  df-xrs 17469  df-qtop 17474  df-imas 17475  df-xps 17477  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-submnd 18726  df-mulg 19008  df-cntz 19252  df-cmn 19721  df-psmet 21251  df-xmet 21252  df-met 21253  df-bl 21254  df-mopn 21255  df-fbas 21256  df-fg 21257  df-cnfld 21260  df-top 22770  df-topon 22787  df-topsp 22809  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-lp 23014  df-perf 23015  df-cn 23105  df-cnp 23106  df-haus 23193  df-cmp 23265  df-tx 23440  df-hmeo 23633  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-xms 24200  df-ms 24201  df-tms 24202  df-cncf 24772  df-ovol 25367  df-vol 25368  df-mbf 25522  df-itg1 25523  df-itg2 25524  df-ibl 25525  df-itg 25526  df-0p 25573  df-limc 25769  df-dv 25770
This theorem is referenced by:  sqwvfoura  45529
  Copyright terms: Public domain W3C validator