Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgcoscmulx Structured version   Visualization version   GIF version

Theorem itgcoscmulx 45974
Description: Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgcoscmulx.a (𝜑𝐴 ∈ ℂ)
itgcoscmulx.b (𝜑𝐵 ∈ ℝ)
itgcoscmulx.c (𝜑𝐶 ∈ ℝ)
itgcoscmulx.blec (𝜑𝐵𝐶)
itgcoscmulx.an0 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
itgcoscmulx (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgcoscmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcoscmulx.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2 itgcoscmulx.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
31, 2iccssred 13402 . . . . . . . . . 10 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
43resmptd 6014 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
54eqcomd 2736 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)))
65oveq2d 7406 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))))
7 ax-resscn 11132 . . . . . . . . 9 ℝ ⊆ ℂ
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
98sselda 3949 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
10 itgcoscmulx.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
1110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
12 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
1311, 12mulcld 11201 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
1413sincld 16105 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
15 itgcoscmulx.an0 . . . . . . . . . . . 12 (𝜑𝐴 ≠ 0)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
1714, 11, 16divcld 11965 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
189, 17syldan 591 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
1918fmpttd 7090 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ)
20 ssidd 3973 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
21 eqid 2730 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 tgioo4 24700 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2321, 22dvres 25819 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐵[,]𝐶) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
248, 19, 20, 3, 23syl22anc 838 . . . . . . 7 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
25 reelprrecn 11167 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
279, 14syldan 591 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
2810adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
2928, 9mulcld 11201 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐴 · 𝑦) ∈ ℂ)
3029coscld 16106 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
3128, 30mulcld 11201 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
328resmptd 6014 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))))
3332eqcomd 2736 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))) = ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ))
3433oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)))
3514fmpttd 7090 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ)
36 ssidd 3973 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
37 dvsinax 45918 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3810, 37syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3938dmeqd 5872 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
4013coscld 16106 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
4111, 40mulcld 11201 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
4241ralrimiva 3126 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
43 dmmptg 6218 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4539, 44eqtr2d 2766 . . . . . . . . . . . . . 14 (𝜑 → ℂ = dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
467, 45sseqtrid 3992 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
47 dvres3 25821 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4826, 35, 36, 46, 47syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4938reseq1d 5952 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ))
508resmptd 6014 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5148, 49, 503eqtrd 2769 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5234, 51eqtrd 2765 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5326, 27, 31, 52, 10, 15dvmptdivc 25876 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
54 iccntr 24717 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
551, 2, 54syl2anc 584 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
5653, 55reseq12d 5954 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)))
57 ioossre 13375 . . . . . . . . 9 (𝐵(,)𝐶) ⊆ ℝ
58 resmpt 6011 . . . . . . . . 9 ((𝐵(,)𝐶) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
5957, 58mp1i 13 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
60 elioore 13343 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℝ)
6160recnd 11209 . . . . . . . . . . 11 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℂ)
6261, 40sylan2 593 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
6310adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
6415adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ≠ 0)
6562, 63, 64divcan3d 11970 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴) = (cos‘(𝐴 · 𝑦)))
6665mpteq2dva 5203 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6756, 59, 663eqtrd 2769 . . . . . . 7 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
686, 24, 673eqtrd 2769 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6968adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
70 oveq2 7398 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
7170fveq2d 6865 . . . . . 6 (𝑦 = 𝑥 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
7271adantl 481 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
73 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
7410adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
7557, 8sstrid 3961 . . . . . . . 8 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
7675sselda 3949 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
7774, 76mulcld 11201 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
7877coscld 16106 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) ∈ ℂ)
7969, 72, 73, 78fvmptd 6978 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = (cos‘(𝐴 · 𝑥)))
8079eqcomd 2736 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
8180itgeq2dv 25690 . 2 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
82 eqidd 2731 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
83 oveq2 7398 . . . . . . . 8 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
8483fveq2d 6865 . . . . . . 7 (𝑦 = 𝐶 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐶)))
8584oveq1d 7405 . . . . . 6 (𝑦 = 𝐶 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
8685adantl 481 . . . . 5 ((𝜑𝑦 = 𝐶) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
871rexrd 11231 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
882rexrd 11231 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
89 itgcoscmulx.blec . . . . . 6 (𝜑𝐵𝐶)
90 ubicc2 13433 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9187, 88, 89, 90syl3anc 1373 . . . . 5 (𝜑𝐶 ∈ (𝐵[,]𝐶))
922recnd 11209 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
9310, 92mulcld 11201 . . . . . . 7 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
9493sincld 16105 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐶)) ∈ ℂ)
9594, 10, 15divcld 11965 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
9682, 86, 91, 95fvmptd 6978 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
97 oveq2 7398 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
9897fveq2d 6865 . . . . . . 7 (𝑦 = 𝐵 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐵)))
9998oveq1d 7405 . . . . . 6 (𝑦 = 𝐵 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10099adantl 481 . . . . 5 ((𝜑𝑦 = 𝐵) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
101 lbicc2 13432 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10287, 88, 89, 101syl3anc 1373 . . . . 5 (𝜑𝐵 ∈ (𝐵[,]𝐶))
1031recnd 11209 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
10410, 103mulcld 11201 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
105104sincld 16105 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐵)) ∈ ℂ)
106105, 10, 15divcld 11965 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
10782, 100, 102, 106fvmptd 6978 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10896, 107oveq12d 7408 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
109 coscn 26362 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
110109a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
11175, 10, 36constcncfg 45877 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11275, 36idcncfg 45878 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
113111, 112mulcncf 25353 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
114110, 113cncfmpt1f 24814 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11568, 114eqeltrd 2829 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
116 ioossicc 13401 . . . . . . 7 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
117116a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
118 ioombl 25473 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
119118a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
12010adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
1213, 7sstrdi 3962 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
122121sselda 3949 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
123120, 122mulcld 11201 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
124123coscld 16106 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
125121, 10, 36constcncfg 45877 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
126121, 36idcncfg 45878 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
127125, 126mulcncf 25353 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
128110, 127cncfmpt1f 24814 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
129 cniccibl 25749 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
1301, 2, 128, 129syl3anc 1373 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
131117, 119, 124, 130iblss 25713 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
13268, 131eqeltrd 2829 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
133 sincn 26361 . . . . . . 7 sin ∈ (ℂ–cn→ℂ)
134133a1i 11 . . . . . 6 (𝜑 → sin ∈ (ℂ–cn→ℂ))
135134, 127cncfmpt1f 24814 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
136 neneq 2932 . . . . . . . 8 (𝐴 ≠ 0 → ¬ 𝐴 = 0)
137 elsni 4609 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
138137con3i 154 . . . . . . . 8 𝐴 = 0 → ¬ 𝐴 ∈ {0})
13915, 136, 1383syl 18 . . . . . . 7 (𝜑 → ¬ 𝐴 ∈ {0})
14010, 139eldifd 3928 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ {0}))
141 difssd 4103 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
142121, 140, 141constcncfg 45877 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
143135, 142divcncf 25355 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
1441, 2, 89, 115, 132, 143ftc2 25958 . . 3 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
14594, 105, 10, 15divsubdird 12004 . . 3 (𝜑 → (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
146108, 144, 1453eqtr4d 2775 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
14781, 146eqtrd 2765 1 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  wss 3917  {csn 4592  {cpr 4594   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080  *cxr 11214  cle 11216  cmin 11412   / cdiv 11842  (,)cioo 13313  [,]cicc 13316  sincsin 16036  cosccos 16037  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911  cnccncf 24776  volcvol 25371  𝐿1cibl 25525  citg 25526   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  sqwvfoura  46233
  Copyright terms: Public domain W3C validator