Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgcoscmulx Structured version   Visualization version   GIF version

Theorem itgcoscmulx 40825
Description: Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgcoscmulx.a (𝜑𝐴 ∈ ℂ)
itgcoscmulx.b (𝜑𝐵 ∈ ℝ)
itgcoscmulx.c (𝜑𝐶 ∈ ℝ)
itgcoscmulx.blec (𝜑𝐵𝐶)
itgcoscmulx.an0 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
itgcoscmulx (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgcoscmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcoscmulx.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2 itgcoscmulx.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
31, 2iccssred 40372 . . . . . . . . . 10 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
43resmptd 5631 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
54eqcomd 2771 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)))
65oveq2d 6860 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))))
7 ax-resscn 10248 . . . . . . . . 9 ℝ ⊆ ℂ
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
98sselda 3763 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
10 itgcoscmulx.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
1110adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
12 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
1311, 12mulcld 10316 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
1413sincld 15145 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
15 itgcoscmulx.an0 . . . . . . . . . . . 12 (𝜑𝐴 ≠ 0)
1615adantr 472 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
1714, 11, 16divcld 11057 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
189, 17syldan 585 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
1918fmpttd 6577 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ)
20 ssidd 3786 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
21 eqid 2765 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2221tgioo2 22888 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2321, 22dvres 23969 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐵[,]𝐶) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
248, 19, 20, 3, 23syl22anc 867 . . . . . . 7 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
25 reelprrecn 10283 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
279, 14syldan 585 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
2810adantr 472 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
2928, 9mulcld 10316 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐴 · 𝑦) ∈ ℂ)
3029coscld 15146 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
3128, 30mulcld 10316 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
328resmptd 5631 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))))
3332eqcomd 2771 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))) = ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ))
3433oveq2d 6860 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)))
3514fmpttd 6577 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ)
36 ssidd 3786 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
37 dvsinax 40768 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3810, 37syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3938dmeqd 5496 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
4013coscld 15146 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
4111, 40mulcld 10316 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
4241ralrimiva 3113 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
43 dmmptg 5820 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4539, 44eqtr2d 2800 . . . . . . . . . . . . . 14 (𝜑 → ℂ = dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
467, 45syl5sseq 3815 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
47 dvres3 23971 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4826, 35, 36, 46, 47syl22anc 867 . . . . . . . . . . . 12 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4938reseq1d 5566 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ))
508resmptd 5631 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5148, 49, 503eqtrd 2803 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5234, 51eqtrd 2799 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5326, 27, 31, 52, 10, 15dvmptdivc 24022 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
54 iccntr 22906 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
551, 2, 54syl2anc 579 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
5653, 55reseq12d 5568 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)))
57 ioossre 12440 . . . . . . . . 9 (𝐵(,)𝐶) ⊆ ℝ
58 resmpt 5628 . . . . . . . . 9 ((𝐵(,)𝐶) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
5957, 58mp1i 13 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
60 elioore 12410 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℝ)
6160recnd 10324 . . . . . . . . . . 11 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℂ)
6261, 40sylan2 586 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
6310adantr 472 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
6415adantr 472 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ≠ 0)
6562, 63, 64divcan3d 11062 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴) = (cos‘(𝐴 · 𝑦)))
6665mpteq2dva 4905 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6756, 59, 663eqtrd 2803 . . . . . . 7 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
686, 24, 673eqtrd 2803 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6968adantr 472 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
70 oveq2 6852 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
7170fveq2d 6381 . . . . . 6 (𝑦 = 𝑥 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
7271adantl 473 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
73 simpr 477 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
7410adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
7557, 8syl5ss 3774 . . . . . . . 8 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
7675sselda 3763 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
7774, 76mulcld 10316 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
7877coscld 15146 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) ∈ ℂ)
7969, 72, 73, 78fvmptd 6479 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = (cos‘(𝐴 · 𝑥)))
8079eqcomd 2771 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
8180itgeq2dv 23842 . 2 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
82 eqidd 2766 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
83 oveq2 6852 . . . . . . . 8 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
8483fveq2d 6381 . . . . . . 7 (𝑦 = 𝐶 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐶)))
8584oveq1d 6859 . . . . . 6 (𝑦 = 𝐶 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
8685adantl 473 . . . . 5 ((𝜑𝑦 = 𝐶) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
871rexrd 10345 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
882rexrd 10345 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
89 itgcoscmulx.blec . . . . . 6 (𝜑𝐵𝐶)
90 ubicc2 12496 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9187, 88, 89, 90syl3anc 1490 . . . . 5 (𝜑𝐶 ∈ (𝐵[,]𝐶))
922recnd 10324 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
9310, 92mulcld 10316 . . . . . . 7 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
9493sincld 15145 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐶)) ∈ ℂ)
9594, 10, 15divcld 11057 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
9682, 86, 91, 95fvmptd 6479 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
97 oveq2 6852 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
9897fveq2d 6381 . . . . . . 7 (𝑦 = 𝐵 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐵)))
9998oveq1d 6859 . . . . . 6 (𝑦 = 𝐵 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10099adantl 473 . . . . 5 ((𝜑𝑦 = 𝐵) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
101 lbicc2 12495 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10287, 88, 89, 101syl3anc 1490 . . . . 5 (𝜑𝐵 ∈ (𝐵[,]𝐶))
1031recnd 10324 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
10410, 103mulcld 10316 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
105104sincld 15145 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐵)) ∈ ℂ)
106105, 10, 15divcld 11057 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
10782, 100, 102, 106fvmptd 6479 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10896, 107oveq12d 6862 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
109 coscn 24493 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
110109a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
11175, 10, 36constcncfg 40725 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11275, 36idcncfg 40726 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
113111, 112mulcncf 23507 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
114110, 113cncfmpt1f 22998 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11568, 114eqeltrd 2844 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
116 ioossicc 12464 . . . . . . 7 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
117116a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
118 ioombl 23626 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
119118a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
12010adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
1213, 7syl6ss 3775 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
122121sselda 3763 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
123120, 122mulcld 10316 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
124123coscld 15146 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
125121, 10, 36constcncfg 40725 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
126121, 36idcncfg 40726 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
127125, 126mulcncf 23507 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
128110, 127cncfmpt1f 22998 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
129 cniccibl 23901 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
1301, 2, 128, 129syl3anc 1490 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
131117, 119, 124, 130iblss 23865 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
13268, 131eqeltrd 2844 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
133 sincn 24492 . . . . . . 7 sin ∈ (ℂ–cn→ℂ)
134133a1i 11 . . . . . 6 (𝜑 → sin ∈ (ℂ–cn→ℂ))
135134, 127cncfmpt1f 22998 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
136 neneq 2943 . . . . . . . 8 (𝐴 ≠ 0 → ¬ 𝐴 = 0)
137 elsni 4353 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
138137con3i 151 . . . . . . . 8 𝐴 = 0 → ¬ 𝐴 ∈ {0})
13915, 136, 1383syl 18 . . . . . . 7 (𝜑 → ¬ 𝐴 ∈ {0})
14010, 139eldifd 3745 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ {0}))
141 difssd 3902 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
142121, 140, 141constcncfg 40725 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
143135, 142divcncf 23508 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
1441, 2, 89, 115, 132, 143ftc2 24101 . . 3 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
14594, 105, 10, 15divsubdird 11096 . . 3 (𝜑 → (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
146108, 144, 1453eqtr4d 2809 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
14781, 146eqtrd 2799 1 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  cdif 3731  wss 3734  {csn 4336  {cpr 4338   class class class wbr 4811  cmpt 4890  dom cdm 5279  ran crn 5280  cres 5281  wf 6066  cfv 6070  (class class class)co 6844  cc 10189  cr 10190  0cc0 10191   · cmul 10196  *cxr 10329  cle 10331  cmin 10522   / cdiv 10940  (,)cioo 12380  [,]cicc 12383  sincsin 15079  cosccos 15080  TopOpenctopn 16351  topGenctg 16367  fldccnfld 20022  intcnt 21104  cnccncf 22961  volcvol 23524  𝐿1cibl 23678  citg 23679   D cdv 23921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cc 9512  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269  ax-addf 10270  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-symdif 4007  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-ofr 7098  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-omul 7771  df-er 7949  df-map 8064  df-pm 8065  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-acn 9021  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-z 11627  df-dec 11744  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-mod 12880  df-seq 13012  df-exp 13071  df-fac 13268  df-bc 13297  df-hash 13325  df-shft 14095  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-limsup 14490  df-clim 14507  df-rlim 14508  df-sum 14705  df-ef 15083  df-sin 15085  df-cos 15086  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-rest 16352  df-topn 16353  df-0g 16371  df-gsum 16372  df-topgen 16373  df-pt 16374  df-prds 16377  df-xrs 16431  df-qtop 16436  df-imas 16437  df-xps 16439  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-mulg 17811  df-cntz 18016  df-cmn 18464  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-fbas 20019  df-fg 20020  df-cnfld 20023  df-top 20981  df-topon 20998  df-topsp 21020  df-bases 21033  df-cld 21106  df-ntr 21107  df-cls 21108  df-nei 21185  df-lp 21223  df-perf 21224  df-cn 21314  df-cnp 21315  df-haus 21402  df-cmp 21473  df-tx 21648  df-hmeo 21841  df-fil 21932  df-fm 22024  df-flim 22025  df-flf 22026  df-xms 22407  df-ms 22408  df-tms 22409  df-cncf 22963  df-ovol 23525  df-vol 23526  df-mbf 23680  df-itg1 23681  df-itg2 23682  df-ibl 23683  df-itg 23684  df-0p 23731  df-limc 23924  df-dv 23925
This theorem is referenced by:  sqwvfoura  41085
  Copyright terms: Public domain W3C validator