Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgcoscmulx Structured version   Visualization version   GIF version

Theorem itgcoscmulx 46094
Description: Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgcoscmulx.a (𝜑𝐴 ∈ ℂ)
itgcoscmulx.b (𝜑𝐵 ∈ ℝ)
itgcoscmulx.c (𝜑𝐶 ∈ ℝ)
itgcoscmulx.blec (𝜑𝐵𝐶)
itgcoscmulx.an0 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
itgcoscmulx (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgcoscmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcoscmulx.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
2 itgcoscmulx.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
31, 2iccssred 13338 . . . . . . . . . 10 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
43resmptd 5995 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
54eqcomd 2739 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶)))
65oveq2d 7370 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))))
7 ax-resscn 11072 . . . . . . . . 9 ℝ ⊆ ℂ
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
98sselda 3930 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
10 itgcoscmulx.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
1110adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
12 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
1311, 12mulcld 11141 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
1413sincld 16043 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
15 itgcoscmulx.an0 . . . . . . . . . . . 12 (𝜑𝐴 ≠ 0)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
1714, 11, 16divcld 11906 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
189, 17syldan 591 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((sin‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
1918fmpttd 7056 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ)
20 ssidd 3954 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
21 eqid 2733 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 tgioo4 24723 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2321, 22dvres 25842 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐵[,]𝐶) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
248, 19, 20, 3, 23syl22anc 838 . . . . . . 7 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ↾ (𝐵[,]𝐶))) = ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))))
25 reelprrecn 11107 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
279, 14syldan 591 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
2810adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
2928, 9mulcld 11141 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝐴 · 𝑦) ∈ ℂ)
3029coscld 16044 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
3128, 30mulcld 11141 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
328resmptd 5995 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))))
3332eqcomd 2739 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦))) = ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ))
3433oveq2d 7370 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)))
3514fmpttd 7056 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ)
36 ssidd 3954 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
37 dvsinax 46038 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3810, 37syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
3938dmeqd 5851 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
4013coscld 16044 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
4111, 40mulcld 11141 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
4241ralrimiva 3125 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ)
43 dmmptg 6196 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ℂ (𝐴 · (cos‘(𝐴 · 𝑦))) ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = ℂ)
4539, 44eqtr2d 2769 . . . . . . . . . . . . . 14 (𝜑 → ℂ = dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
467, 45sseqtrid 3973 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))
47 dvres3 25844 . . . . . . . . . . . . 13 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))))) → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4826, 35, 36, 46, 47syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ))
4938reseq1d 5933 . . . . . . . . . . . 12 (𝜑 → ((ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) ↾ ℝ) = ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ))
508resmptd 5995 . . . . . . . . . . . 12 (𝜑 → ((𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5148, 49, 503eqtrd 2772 . . . . . . . . . . 11 (𝜑 → (ℝ D ((𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) ↾ ℝ)) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5234, 51eqtrd 2768 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
5326, 27, 31, 52, 10, 15dvmptdivc 25899 . . . . . . . . 9 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
54 iccntr 24740 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
551, 2, 54syl2anc 584 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶)) = (𝐵(,)𝐶))
5653, 55reseq12d 5935 . . . . . . . 8 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)))
57 ioossre 13311 . . . . . . . . 9 (𝐵(,)𝐶) ⊆ ℝ
58 resmpt 5992 . . . . . . . . 9 ((𝐵(,)𝐶) ⊆ ℝ → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
5957, 58mp1i 13 . . . . . . . 8 (𝜑 → ((𝑦 ∈ ℝ ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) ↾ (𝐵(,)𝐶)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)))
60 elioore 13279 . . . . . . . . . . . 12 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℝ)
6160recnd 11149 . . . . . . . . . . 11 (𝑦 ∈ (𝐵(,)𝐶) → 𝑦 ∈ ℂ)
6261, 40sylan2 593 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
6310adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
6415adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → 𝐴 ≠ 0)
6562, 63, 64divcan3d 11911 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐵(,)𝐶)) → ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴) = (cos‘(𝐴 · 𝑦)))
6665mpteq2dva 5188 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ ((𝐴 · (cos‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6756, 59, 663eqtrd 2772 . . . . . . 7 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ↾ ((int‘(topGen‘ran (,)))‘(𝐵[,]𝐶))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
686, 24, 673eqtrd 2772 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
6968adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))))
70 oveq2 7362 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
7170fveq2d 6834 . . . . . 6 (𝑦 = 𝑥 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
7271adantl 481 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑥)))
73 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
7410adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
7557, 8sstrid 3942 . . . . . . . 8 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
7675sselda 3930 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
7774, 76mulcld 11141 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
7877coscld 16044 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) ∈ ℂ)
7969, 72, 73, 78fvmptd 6944 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = (cos‘(𝐴 · 𝑥)))
8079eqcomd 2739 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (cos‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
8180itgeq2dv 25713 . 2 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
82 eqidd 2734 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))
83 oveq2 7362 . . . . . . . 8 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
8483fveq2d 6834 . . . . . . 7 (𝑦 = 𝐶 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐶)))
8584oveq1d 7369 . . . . . 6 (𝑦 = 𝐶 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
8685adantl 481 . . . . 5 ((𝜑𝑦 = 𝐶) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
871rexrd 11171 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
882rexrd 11171 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
89 itgcoscmulx.blec . . . . . 6 (𝜑𝐵𝐶)
90 ubicc2 13369 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9187, 88, 89, 90syl3anc 1373 . . . . 5 (𝜑𝐶 ∈ (𝐵[,]𝐶))
922recnd 11149 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
9310, 92mulcld 11141 . . . . . . 7 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
9493sincld 16043 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐶)) ∈ ℂ)
9594, 10, 15divcld 11906 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
9682, 86, 91, 95fvmptd 6944 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = ((sin‘(𝐴 · 𝐶)) / 𝐴))
97 oveq2 7362 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
9897fveq2d 6834 . . . . . . 7 (𝑦 = 𝐵 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝐵)))
9998oveq1d 7369 . . . . . 6 (𝑦 = 𝐵 → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10099adantl 481 . . . . 5 ((𝜑𝑦 = 𝐵) → ((sin‘(𝐴 · 𝑦)) / 𝐴) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
101 lbicc2 13368 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10287, 88, 89, 101syl3anc 1373 . . . . 5 (𝜑𝐵 ∈ (𝐵[,]𝐶))
1031recnd 11149 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
10410, 103mulcld 11141 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
105104sincld 16043 . . . . . 6 (𝜑 → (sin‘(𝐴 · 𝐵)) ∈ ℂ)
106105, 10, 15divcld 11906 . . . . 5 (𝜑 → ((sin‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
10782, 100, 102, 106fvmptd 6944 . . . 4 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = ((sin‘(𝐴 · 𝐵)) / 𝐴))
10896, 107oveq12d 7372 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
109 coscn 26385 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
110109a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
11175, 10, 36constcncfg 45997 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11275, 36idcncfg 45998 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
113111, 112mulcncf 25376 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
114110, 113cncfmpt1f 24837 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
11568, 114eqeltrd 2833 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
116 ioossicc 13337 . . . . . . 7 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
117116a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
118 ioombl 25496 . . . . . . 7 (𝐵(,)𝐶) ∈ dom vol
119118a1i 11 . . . . . 6 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
12010adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
1213, 7sstrdi 3943 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
122121sselda 3930 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
123120, 122mulcld 11141 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
124123coscld 16044 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
125121, 10, 36constcncfg 45997 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
126121, 36idcncfg 45998 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
127125, 126mulcncf 25376 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
128110, 127cncfmpt1f 24837 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
129 cniccibl 25772 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
1301, 2, 128, 129syl3anc 1373 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
131117, 119, 124, 130iblss 25736 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ 𝐿1)
13268, 131eqeltrd 2833 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
133 sincn 26384 . . . . . . 7 sin ∈ (ℂ–cn→ℂ)
134133a1i 11 . . . . . 6 (𝜑 → sin ∈ (ℂ–cn→ℂ))
135134, 127cncfmpt1f 24837 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
136 neneq 2935 . . . . . . . 8 (𝐴 ≠ 0 → ¬ 𝐴 = 0)
137 elsni 4594 . . . . . . . . 9 (𝐴 ∈ {0} → 𝐴 = 0)
138137con3i 154 . . . . . . . 8 𝐴 = 0 → ¬ 𝐴 ∈ {0})
13915, 136, 1383syl 18 . . . . . . 7 (𝜑 → ¬ 𝐴 ∈ {0})
14010, 139eldifd 3909 . . . . . 6 (𝜑𝐴 ∈ (ℂ ∖ {0}))
141 difssd 4086 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
142121, 140, 141constcncfg 45997 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
143135, 142divcncf 25378 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
1441, 2, 89, 115, 132, 143ftc2 25981 . . 3 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
14594, 105, 10, 15divsubdird 11945 . . 3 (𝜑 → (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴) = (((sin‘(𝐴 · 𝐶)) / 𝐴) − ((sin‘(𝐴 · 𝐵)) / 𝐴)))
146108, 144, 1453eqtr4d 2778 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ ((sin‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
14781, 146eqtrd 2768 1 (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  cdif 3895  wss 3898  {csn 4577  {cpr 4579   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622  cres 5623  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015   · cmul 11020  *cxr 11154  cle 11156  cmin 11353   / cdiv 11783  (,)cioo 13249  [,]cicc 13252  sincsin 15974  cosccos 15975  TopOpenctopn 17329  topGenctg 17345  fldccnfld 21295  intcnt 22935  cnccncf 24799  volcvol 25394  𝐿1cibl 25548  citg 25549   D cdv 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cc 10335  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-symdif 4202  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-ofr 7619  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-omul 8398  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-dju 9803  df-card 9841  df-acn 9844  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-cmp 23305  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-ovol 25395  df-vol 25396  df-mbf 25550  df-itg1 25551  df-itg2 25552  df-ibl 25553  df-itg 25554  df-0p 25601  df-limc 25797  df-dv 25798
This theorem is referenced by:  sqwvfoura  46353
  Copyright terms: Public domain W3C validator