MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem2 Structured version   Visualization version   GIF version

Theorem isosctrlem2 26863
Description: Lemma for isosctr 26865. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.)
Assertion
Ref Expression
isosctrlem2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))

Proof of Theorem isosctrlem2
StepHypRef Expression
1 1cnd 11257 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℂ)
2 simpl1 1191 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 𝐴 ∈ ℂ)
31, 2negsubd 11627 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 + -𝐴) = (1 − 𝐴))
4 1rp 13039 . . . . . . . 8 1 ∈ ℝ+
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℝ+)
6 simpl3 1193 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ¬ 1 = 𝐴)
7 simpl2 1192 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (abs‘𝐴) = 1)
81, 2, 1sub32d 11653 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) = ((1 − 1) − 𝐴))
9 1m1e0 12339 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
109oveq1i 7442 . . . . . . . . . . . . . . . 16 ((1 − 1) − 𝐴) = (0 − 𝐴)
11 df-neg 11496 . . . . . . . . . . . . . . . 16 -𝐴 = (0 − 𝐴)
1210, 11eqtr4i 2767 . . . . . . . . . . . . . . 15 ((1 − 1) − 𝐴) = -𝐴
138, 12eqtrdi 2792 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) = -𝐴)
14 1cnd 11257 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 1 ∈ ℂ)
15 simp1 1136 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝐴 ∈ ℂ)
1614, 15subcld 11621 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
1716adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℂ)
18 ax-1cn 11214 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
19 subeq0 11536 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2018, 19mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2120biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
2221con3dimp 408 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → ¬ (1 − 𝐴) = 0)
2322neqned 2946 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
24233adant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
2524adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ≠ 0)
2617, 25recrecd 12041 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 / (1 − 𝐴))) = (1 − 𝐴))
2714, 16, 24div2negd 12059 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
2827adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
2915negcld 11608 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -𝐴 ∈ ℂ)
3029, 16, 24cjdivd 15263 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = ((∗‘-𝐴) / (∗‘(1 − 𝐴))))
3115cjnegd 15251 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘-𝐴) = -(∗‘𝐴))
32 fveq2 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
33 abs0 15325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (abs‘0) = 0
3432, 33eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = 0 → (abs‘𝐴) = 0)
35 eqtr2 2760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((abs‘𝐴) = 1 ∧ (abs‘𝐴) = 0) → 1 = 0)
3634, 35sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((abs‘𝐴) = 1 ∧ 𝐴 = 0) → 1 = 0)
37 ax-1ne0 11225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 ≠ 0
38 neneq 2945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1 ≠ 0 → ¬ 1 = 0)
3937, 38mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((abs‘𝐴) = 1 ∧ 𝐴 = 0) → ¬ 1 = 0)
4036, 39pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs‘𝐴) = 1 → ¬ 𝐴 = 0)
4140adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ¬ 𝐴 = 0)
42 df-ne 2940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
43 oveq1 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((abs‘𝐴) = 1 → ((abs‘𝐴)↑2) = (1↑2))
44 sq1 14235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (1↑2) = 1
4543, 44eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((abs‘𝐴) = 1 → ((abs‘𝐴)↑2) = 1)
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
47 absvalsq 15320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
4847adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
4946, 48eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 1 = (𝐴 · (∗‘𝐴)))
50493adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 1 = (𝐴 · (∗‘𝐴)))
5150oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((𝐴 · (∗‘𝐴)) / 𝐴))
52 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
5352cjcld 15236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
54 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
5553, 52, 54divcan3d 12049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
5651, 55eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (∗‘𝐴))
5742, 56syl3an3br 1409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 𝐴 = 0) → (1 / 𝐴) = (∗‘𝐴))
5841, 57mpd3an3 1463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = (∗‘𝐴))
5958eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘𝐴) = (1 / 𝐴))
60593adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘𝐴) = (1 / 𝐴))
6160negeqd 11503 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -(∗‘𝐴) = -(1 / 𝐴))
6231, 61eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘-𝐴) = -(1 / 𝐴))
6362oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((∗‘-𝐴) / (∗‘(1 − 𝐴))) = (-(1 / 𝐴) / (∗‘(1 − 𝐴))))
64 cjsub 15189 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(1 − 𝐴)) = ((∗‘1) − (∗‘𝐴)))
6518, 64mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ ℂ → (∗‘(1 − 𝐴)) = ((∗‘1) − (∗‘𝐴)))
66 1red 11263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴 ∈ ℂ → 1 ∈ ℝ)
6766cjred 15266 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ ℂ → (∗‘1) = 1)
6867oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ ℂ → ((∗‘1) − (∗‘𝐴)) = (1 − (∗‘𝐴)))
6965, 68eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ ℂ → (∗‘(1 − 𝐴)) = (1 − (∗‘𝐴)))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘(1 − 𝐴)) = (1 − (∗‘𝐴)))
7159oveq2d 7448 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (∗‘𝐴)) = (1 − (1 / 𝐴)))
7270, 71eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘(1 − 𝐴)) = (1 − (1 / 𝐴)))
73723adant3 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(1 − 𝐴)) = (1 − (1 / 𝐴)))
7473oveq2d 7448 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (∗‘(1 − 𝐴))) = (-(1 / 𝐴) / (1 − (1 / 𝐴))))
7530, 63, 743eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = (-(1 / 𝐴) / (1 − (1 / 𝐴))))
76403ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ¬ 𝐴 = 0)
7776neqned 2946 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝐴 ≠ 0)
78 1cnd 11257 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
79 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
80 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
8178, 79, 80divnegd 12057 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (-1 / 𝐴))
8281oveq1d 7447 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
8315, 77, 82syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
8414negcld 11608 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -1 ∈ ℂ)
8584, 15, 77divcld 12044 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / 𝐴) ∈ ℂ)
8615, 77reccld 12037 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / 𝐴) ∈ ℂ)
8714, 86subcld 11621 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − (1 / 𝐴)) ∈ ℂ)
8816, 24cjne0d 15243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(1 − 𝐴)) ≠ 0)
8973, 88eqnetrrd 3008 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − (1 / 𝐴)) ≠ 0)
9085, 87, 15, 89, 77divcan5d 12070 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · (-1 / 𝐴)) / (𝐴 · (1 − (1 / 𝐴)))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
9184, 15, 77divcan2d 12046 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (-1 / 𝐴)) = -1)
9215, 14, 86subdid 11720 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 − (1 / 𝐴))) = ((𝐴 · 1) − (𝐴 · (1 / 𝐴))))
9315mulridd 11279 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · 1) = 𝐴)
9415, 77recidd 12039 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 / 𝐴)) = 1)
9593, 94oveq12d 7450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · 1) − (𝐴 · (1 / 𝐴))) = (𝐴 − 1))
9692, 95eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 − (1 / 𝐴))) = (𝐴 − 1))
9791, 96oveq12d 7450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · (-1 / 𝐴)) / (𝐴 · (1 − (1 / 𝐴)))) = (-1 / (𝐴 − 1)))
9883, 90, 973eqtr2d 2782 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = (-1 / (𝐴 − 1)))
99 subcl 11508 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
10099negnegd 11612 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → --(𝐴 − 1) = (𝐴 − 1))
101 negsubdi2 11569 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
102101negeqd 11503 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → --(𝐴 − 1) = -(1 − 𝐴))
103100, 102eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) = -(1 − 𝐴))
10415, 14, 103syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 − 1) = -(1 − 𝐴))
105104oveq2d 7448 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / (𝐴 − 1)) = (-1 / -(1 − 𝐴)))
10675, 98, 1053eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = (-1 / -(1 − 𝐴)))
107106adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) = (-1 / -(1 − 𝐴)))
10829, 16, 24divcld 12044 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
109108adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
110 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(-𝐴 / (1 − 𝐴))) = 0)
111109, 110reim0bd 15240 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℝ)
112111cjred 15266 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) = (-𝐴 / (1 − 𝐴)))
113112, 111eqeltrd 2840 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) ∈ ℝ)
114107, 113eqeltrrd 2841 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-1 / -(1 − 𝐴)) ∈ ℝ)
11528, 114eqeltrrd 2841 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 − 𝐴)) ∈ ℝ)
11616, 24recne0d 12038 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / (1 − 𝐴)) ≠ 0)
117116adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 − 𝐴)) ≠ 0)
118115, 117rereccld 12095 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 / (1 − 𝐴))) ∈ ℝ)
11926, 118eqeltrrd 2841 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℝ)
120 1red 11263 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℝ)
121119, 120resubcld 11692 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) ∈ ℝ)
12213, 121eqeltrrd 2841 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → -𝐴 ∈ ℝ)
1232, 122negrebd 11620 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 𝐴 ∈ ℝ)
124123absord 15455 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
125 eqeq1 2740 . . . . . . . . . . . . 13 ((abs‘𝐴) = 1 → ((abs‘𝐴) = 𝐴 ↔ 1 = 𝐴))
126125biimpd 229 . . . . . . . . . . . 12 ((abs‘𝐴) = 1 → ((abs‘𝐴) = 𝐴 → 1 = 𝐴))
127 eqeq1 2740 . . . . . . . . . . . . 13 ((abs‘𝐴) = 1 → ((abs‘𝐴) = -𝐴 ↔ 1 = -𝐴))
128127biimpd 229 . . . . . . . . . . . 12 ((abs‘𝐴) = 1 → ((abs‘𝐴) = -𝐴 → 1 = -𝐴))
129126, 128orim12d 966 . . . . . . . . . . 11 ((abs‘𝐴) = 1 → (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → (1 = 𝐴 ∨ 1 = -𝐴)))
1307, 124, 129sylc 65 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 = 𝐴 ∨ 1 = -𝐴))
131130ord 864 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (¬ 1 = 𝐴 → 1 = -𝐴))
1326, 131mpd 15 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 = -𝐴)
133132, 5eqeltrrd 2841 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → -𝐴 ∈ ℝ+)
1345, 133rpaddcld 13093 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 + -𝐴) ∈ ℝ+)
1353, 134eqeltrrd 2841 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℝ+)
136135relogcld 26666 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (log‘(1 − 𝐴)) ∈ ℝ)
137136reim0d 15265 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(1 − 𝐴))) = 0)
138133, 135rpdivcld 13095 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℝ+)
139138relogcld 26666 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (log‘(-𝐴 / (1 − 𝐴))) ∈ ℝ)
140139reim0d 15265 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) = 0)
141137, 140eqtr4d 2779 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
14216, 24logcld 26613 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
143142adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(1 − 𝐴)) ∈ ℂ)
144143imcld 15235 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
145144recnd 11290 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℂ)
146108adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
14715, 77negne0d 11619 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -𝐴 ≠ 0)
14829, 16, 147, 24divne0d 12060 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-𝐴 / (1 − 𝐴)) ≠ 0)
149148adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (-𝐴 / (1 − 𝐴)) ≠ 0)
150146, 149logcld 26613 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(-𝐴 / (1 − 𝐴))) ∈ ℂ)
151150imcld 15235 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) ∈ ℝ)
152151recnd 11290 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) ∈ ℂ)
153106fveq2d 6909 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (log‘(-1 / -(1 − 𝐴))))
154153adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (log‘(-1 / -(1 − 𝐴))))
155 logcj 26649 . . . . . . 7 (((-𝐴 / (1 − 𝐴)) ∈ ℂ ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
156108, 155sylan 580 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
15716, 24reccld 12037 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / (1 − 𝐴)) ∈ ℂ)
158157, 116logcld 26613 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
159158negnegd 11612 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → --(log‘(1 / (1 − 𝐴))) = (log‘(1 / (1 − 𝐴))))
160 isosctrlem1 26862 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
161 logrec 26807 . . . . . . . . . 10 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ (ℑ‘(log‘(1 − 𝐴))) ≠ π) → (log‘(1 − 𝐴)) = -(log‘(1 / (1 − 𝐴))))
16216, 24, 160, 161syl3anc 1372 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) = -(log‘(1 / (1 − 𝐴))))
163162negeqd 11503 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -(log‘(1 − 𝐴)) = --(log‘(1 / (1 − 𝐴))))
16427fveq2d 6909 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(-1 / -(1 − 𝐴))) = (log‘(1 / (1 − 𝐴))))
165159, 163, 1643eqtr4rd 2787 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(-1 / -(1 − 𝐴))) = -(log‘(1 − 𝐴)))
166165adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(-1 / -(1 − 𝐴))) = -(log‘(1 − 𝐴)))
167154, 156, 1663eqtr3rd 2785 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → -(log‘(1 − 𝐴)) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
168167fveq2d 6909 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘-(log‘(1 − 𝐴))) = (ℑ‘(∗‘(log‘(-𝐴 / (1 − 𝐴))))))
169143imnegd 15250 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘-(log‘(1 − 𝐴))) = -(ℑ‘(log‘(1 − 𝐴))))
170150imcjd 15245 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(∗‘(log‘(-𝐴 / (1 − 𝐴))))) = -(ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
171168, 169, 1703eqtr3d 2784 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → -(ℑ‘(log‘(1 − 𝐴))) = -(ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
172145, 152, 171neg11d 11633 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
173141, 172pm2.61dane 3028 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2939  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  +crp 13035  cexp 14103  ccj 15136  cim 15138  abscabs 15274  πcpi 16103  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  isosctrlem3  26864
  Copyright terms: Public domain W3C validator