MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem2 Structured version   Visualization version   GIF version

Theorem isosctrlem2 26771
Description: Lemma for isosctr 26773. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.)
Assertion
Ref Expression
isosctrlem2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))

Proof of Theorem isosctrlem2
StepHypRef Expression
1 1cnd 11247 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℂ)
2 simpl1 1188 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 𝐴 ∈ ℂ)
31, 2negsubd 11615 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 + -𝐴) = (1 − 𝐴))
4 1rp 13018 . . . . . . . 8 1 ∈ ℝ+
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℝ+)
6 simpl3 1190 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ¬ 1 = 𝐴)
7 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (abs‘𝐴) = 1)
81, 2, 1sub32d 11641 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) = ((1 − 1) − 𝐴))
9 1m1e0 12322 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
109oveq1i 7436 . . . . . . . . . . . . . . . 16 ((1 − 1) − 𝐴) = (0 − 𝐴)
11 df-neg 11485 . . . . . . . . . . . . . . . 16 -𝐴 = (0 − 𝐴)
1210, 11eqtr4i 2759 . . . . . . . . . . . . . . 15 ((1 − 1) − 𝐴) = -𝐴
138, 12eqtrdi 2784 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) = -𝐴)
14 1cnd 11247 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 1 ∈ ℂ)
15 simp1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝐴 ∈ ℂ)
1614, 15subcld 11609 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
1716adantr 479 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℂ)
18 ax-1cn 11204 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
19 subeq0 11524 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2018, 19mpan 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
2120biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
2221con3dimp 407 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → ¬ (1 − 𝐴) = 0)
2322neqned 2944 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
24233adant2 1128 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
2524adantr 479 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ≠ 0)
2617, 25recrecd 12025 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 / (1 − 𝐴))) = (1 − 𝐴))
2714, 16, 24div2negd 12043 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
2827adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
2915negcld 11596 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -𝐴 ∈ ℂ)
3029, 16, 24cjdivd 15210 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = ((∗‘-𝐴) / (∗‘(1 − 𝐴))))
3115cjnegd 15198 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘-𝐴) = -(∗‘𝐴))
32 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
33 abs0 15272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (abs‘0) = 0
3432, 33eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = 0 → (abs‘𝐴) = 0)
35 eqtr2 2752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((abs‘𝐴) = 1 ∧ (abs‘𝐴) = 0) → 1 = 0)
3634, 35sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((abs‘𝐴) = 1 ∧ 𝐴 = 0) → 1 = 0)
37 ax-1ne0 11215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 ≠ 0
38 neneq 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1 ≠ 0 → ¬ 1 = 0)
3937, 38mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((abs‘𝐴) = 1 ∧ 𝐴 = 0) → ¬ 1 = 0)
4036, 39pm2.65da 815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs‘𝐴) = 1 → ¬ 𝐴 = 0)
4140adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ¬ 𝐴 = 0)
42 df-ne 2938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
43 oveq1 7433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((abs‘𝐴) = 1 → ((abs‘𝐴)↑2) = (1↑2))
44 sq1 14198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (1↑2) = 1
4543, 44eqtrdi 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((abs‘𝐴) = 1 → ((abs‘𝐴)↑2) = 1)
4645adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = 1)
47 absvalsq 15267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
4847adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
4946, 48eqtr3d 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 1 = (𝐴 · (∗‘𝐴)))
50493adant3 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 1 = (𝐴 · (∗‘𝐴)))
5150oveq1d 7441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (1 / 𝐴) = ((𝐴 · (∗‘𝐴)) / 𝐴))
52 simp1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
5352cjcld 15183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
54 simp3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
5553, 52, 54divcan3d 12033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / 𝐴) = (∗‘𝐴))
5651, 55eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (∗‘𝐴))
5742, 56syl3an3br 1405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 𝐴 = 0) → (1 / 𝐴) = (∗‘𝐴))
5841, 57mpd3an3 1458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 / 𝐴) = (∗‘𝐴))
5958eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘𝐴) = (1 / 𝐴))
60593adant3 1129 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘𝐴) = (1 / 𝐴))
6160negeqd 11492 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -(∗‘𝐴) = -(1 / 𝐴))
6231, 61eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘-𝐴) = -(1 / 𝐴))
6362oveq1d 7441 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((∗‘-𝐴) / (∗‘(1 − 𝐴))) = (-(1 / 𝐴) / (∗‘(1 − 𝐴))))
64 cjsub 15136 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(1 − 𝐴)) = ((∗‘1) − (∗‘𝐴)))
6518, 64mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ ℂ → (∗‘(1 − 𝐴)) = ((∗‘1) − (∗‘𝐴)))
66 1red 11253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴 ∈ ℂ → 1 ∈ ℝ)
6766cjred 15213 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ ℂ → (∗‘1) = 1)
6867oveq1d 7441 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ ℂ → ((∗‘1) − (∗‘𝐴)) = (1 − (∗‘𝐴)))
6965, 68eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ ℂ → (∗‘(1 − 𝐴)) = (1 − (∗‘𝐴)))
7069adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘(1 − 𝐴)) = (1 − (∗‘𝐴)))
7159oveq2d 7442 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (∗‘𝐴)) = (1 − (1 / 𝐴)))
7270, 71eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (∗‘(1 − 𝐴)) = (1 − (1 / 𝐴)))
73723adant3 1129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(1 − 𝐴)) = (1 − (1 / 𝐴)))
7473oveq2d 7442 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (∗‘(1 − 𝐴))) = (-(1 / 𝐴) / (1 − (1 / 𝐴))))
7530, 63, 743eqtrd 2772 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = (-(1 / 𝐴) / (1 − (1 / 𝐴))))
76403ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ¬ 𝐴 = 0)
7776neqned 2944 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝐴 ≠ 0)
78 1cnd 11247 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
79 simpl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
80 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
8178, 79, 80divnegd 12041 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (-1 / 𝐴))
8281oveq1d 7441 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
8315, 77, 82syl2anc 582 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
8414negcld 11596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -1 ∈ ℂ)
8584, 15, 77divcld 12028 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / 𝐴) ∈ ℂ)
8615, 77reccld 12021 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / 𝐴) ∈ ℂ)
8714, 86subcld 11609 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − (1 / 𝐴)) ∈ ℂ)
8816, 24cjne0d 15190 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(1 − 𝐴)) ≠ 0)
8973, 88eqnetrrd 3006 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − (1 / 𝐴)) ≠ 0)
9085, 87, 15, 89, 77divcan5d 12054 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · (-1 / 𝐴)) / (𝐴 · (1 − (1 / 𝐴)))) = ((-1 / 𝐴) / (1 − (1 / 𝐴))))
9184, 15, 77divcan2d 12030 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (-1 / 𝐴)) = -1)
9215, 14, 86subdid 11708 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 − (1 / 𝐴))) = ((𝐴 · 1) − (𝐴 · (1 / 𝐴))))
9315mulridd 11269 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · 1) = 𝐴)
9415, 77recidd 12023 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 / 𝐴)) = 1)
9593, 94oveq12d 7444 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · 1) − (𝐴 · (1 / 𝐴))) = (𝐴 − 1))
9692, 95eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 · (1 − (1 / 𝐴))) = (𝐴 − 1))
9791, 96oveq12d 7444 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((𝐴 · (-1 / 𝐴)) / (𝐴 · (1 − (1 / 𝐴)))) = (-1 / (𝐴 − 1)))
9883, 90, 973eqtr2d 2774 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-(1 / 𝐴) / (1 − (1 / 𝐴))) = (-1 / (𝐴 − 1)))
99 subcl 11497 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
10099negnegd 11600 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → --(𝐴 − 1) = (𝐴 − 1))
101 negsubdi2 11557 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
102101negeqd 11492 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → --(𝐴 − 1) = -(1 − 𝐴))
103100, 102eqtr3d 2770 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) = -(1 − 𝐴))
10415, 14, 103syl2anc 582 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝐴 − 1) = -(1 − 𝐴))
105104oveq2d 7442 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-1 / (𝐴 − 1)) = (-1 / -(1 − 𝐴)))
10675, 98, 1053eqtrd 2772 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (∗‘(-𝐴 / (1 − 𝐴))) = (-1 / -(1 − 𝐴)))
107106adantr 479 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) = (-1 / -(1 − 𝐴)))
10829, 16, 24divcld 12028 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
109108adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
110 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(-𝐴 / (1 − 𝐴))) = 0)
111109, 110reim0bd 15187 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℝ)
112111cjred 15213 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) = (-𝐴 / (1 − 𝐴)))
113112, 111eqeltrd 2829 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (∗‘(-𝐴 / (1 − 𝐴))) ∈ ℝ)
114107, 113eqeltrrd 2830 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-1 / -(1 − 𝐴)) ∈ ℝ)
11528, 114eqeltrrd 2830 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 − 𝐴)) ∈ ℝ)
11616, 24recne0d 12022 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / (1 − 𝐴)) ≠ 0)
117116adantr 479 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 − 𝐴)) ≠ 0)
118115, 117rereccld 12079 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 / (1 / (1 − 𝐴))) ∈ ℝ)
11926, 118eqeltrrd 2830 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℝ)
120 1red 11253 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 ∈ ℝ)
121119, 120resubcld 11680 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((1 − 𝐴) − 1) ∈ ℝ)
12213, 121eqeltrrd 2830 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → -𝐴 ∈ ℝ)
1232, 122negrebd 11608 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 𝐴 ∈ ℝ)
124123absord 15402 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
125 eqeq1 2732 . . . . . . . . . . . . 13 ((abs‘𝐴) = 1 → ((abs‘𝐴) = 𝐴 ↔ 1 = 𝐴))
126125biimpd 228 . . . . . . . . . . . 12 ((abs‘𝐴) = 1 → ((abs‘𝐴) = 𝐴 → 1 = 𝐴))
127 eqeq1 2732 . . . . . . . . . . . . 13 ((abs‘𝐴) = 1 → ((abs‘𝐴) = -𝐴 ↔ 1 = -𝐴))
128127biimpd 228 . . . . . . . . . . . 12 ((abs‘𝐴) = 1 → ((abs‘𝐴) = -𝐴 → 1 = -𝐴))
129126, 128orim12d 962 . . . . . . . . . . 11 ((abs‘𝐴) = 1 → (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → (1 = 𝐴 ∨ 1 = -𝐴)))
1307, 124, 129sylc 65 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 = 𝐴 ∨ 1 = -𝐴))
131130ord 862 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (¬ 1 = 𝐴 → 1 = -𝐴))
1326, 131mpd 15 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → 1 = -𝐴)
133132, 5eqeltrrd 2830 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → -𝐴 ∈ ℝ+)
1345, 133rpaddcld 13071 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 + -𝐴) ∈ ℝ+)
1353, 134eqeltrrd 2830 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (1 − 𝐴) ∈ ℝ+)
136135relogcld 26577 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (log‘(1 − 𝐴)) ∈ ℝ)
137136reim0d 15212 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(1 − 𝐴))) = 0)
138133, 135rpdivcld 13073 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (-𝐴 / (1 − 𝐴)) ∈ ℝ+)
139138relogcld 26577 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (log‘(-𝐴 / (1 − 𝐴))) ∈ ℝ)
140139reim0d 15212 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) = 0)
141137, 140eqtr4d 2771 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) = 0) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
14216, 24logcld 26524 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
143142adantr 479 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(1 − 𝐴)) ∈ ℂ)
144143imcld 15182 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
145144recnd 11280 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℂ)
146108adantr 479 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (-𝐴 / (1 − 𝐴)) ∈ ℂ)
14715, 77negne0d 11607 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -𝐴 ≠ 0)
14829, 16, 147, 24divne0d 12044 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (-𝐴 / (1 − 𝐴)) ≠ 0)
149148adantr 479 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (-𝐴 / (1 − 𝐴)) ≠ 0)
150146, 149logcld 26524 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(-𝐴 / (1 − 𝐴))) ∈ ℂ)
151150imcld 15182 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) ∈ ℝ)
152151recnd 11280 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))) ∈ ℂ)
153106fveq2d 6906 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (log‘(-1 / -(1 − 𝐴))))
154153adantr 479 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (log‘(-1 / -(1 − 𝐴))))
155 logcj 26560 . . . . . . 7 (((-𝐴 / (1 − 𝐴)) ∈ ℂ ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
156108, 155sylan 578 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(∗‘(-𝐴 / (1 − 𝐴)))) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
15716, 24reccld 12021 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 / (1 − 𝐴)) ∈ ℂ)
158157, 116logcld 26524 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
159158negnegd 11600 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → --(log‘(1 / (1 − 𝐴))) = (log‘(1 / (1 − 𝐴))))
160 isosctrlem1 26770 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
161 logrec 26715 . . . . . . . . . 10 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ (ℑ‘(log‘(1 − 𝐴))) ≠ π) → (log‘(1 − 𝐴)) = -(log‘(1 / (1 − 𝐴))))
16216, 24, 160, 161syl3anc 1368 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) = -(log‘(1 / (1 − 𝐴))))
163162negeqd 11492 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → -(log‘(1 − 𝐴)) = --(log‘(1 / (1 − 𝐴))))
16427fveq2d 6906 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(-1 / -(1 − 𝐴))) = (log‘(1 / (1 − 𝐴))))
165159, 163, 1643eqtr4rd 2779 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (log‘(-1 / -(1 − 𝐴))) = -(log‘(1 − 𝐴)))
166165adantr 479 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (log‘(-1 / -(1 − 𝐴))) = -(log‘(1 − 𝐴)))
167154, 156, 1663eqtr3rd 2777 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → -(log‘(1 − 𝐴)) = (∗‘(log‘(-𝐴 / (1 − 𝐴)))))
168167fveq2d 6906 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘-(log‘(1 − 𝐴))) = (ℑ‘(∗‘(log‘(-𝐴 / (1 − 𝐴))))))
169143imnegd 15197 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘-(log‘(1 − 𝐴))) = -(ℑ‘(log‘(1 − 𝐴))))
170150imcjd 15192 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(∗‘(log‘(-𝐴 / (1 − 𝐴))))) = -(ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
171168, 169, 1703eqtr3d 2776 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → -(ℑ‘(log‘(1 − 𝐴))) = -(ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
172145, 152, 171neg11d 11621 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) ∧ (ℑ‘(-𝐴 / (1 − 𝐴))) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
173141, 172pm2.61dane 3026 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2937  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  cmin 11482  -cneg 11483   / cdiv 11909  2c2 12305  +crp 13014  cexp 14066  ccj 15083  cim 15085  abscabs 15221  πcpi 16050  logclog 26508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-pi 16056  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-limc 25815  df-dv 25816  df-log 26510
This theorem is referenced by:  isosctrlem3  26772
  Copyright terms: Public domain W3C validator