Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr2edgneu | Structured version Visualization version GIF version |
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 27687. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) |
Ref | Expression |
---|---|
umgrvad2edg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgr2edgneu | ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrvad2edg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | umgrvad2edg 27688 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) |
3 | 3simpc 1149 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → (𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) | |
4 | neneq 2947 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ¬ 𝑥 = 𝑦) | |
5 | 4 | 3ad2ant1 1132 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ¬ 𝑥 = 𝑦) |
6 | 3, 5 | jca 512 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
7 | 6 | reximi 3084 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
8 | 7 | reximi 3084 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
10 | rexanali 3102 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
11 | 10 | rexbii 3094 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
12 | rexnal 3100 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
13 | 11, 12 | bitri 274 | . . . 4 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
14 | 9, 13 | sylib 217 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
15 | 14 | intnand 489 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
16 | eleq2w 2821 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ 𝑦)) | |
17 | 16 | reu4 3675 | . 2 ⊢ (∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ↔ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
18 | 15, 17 | sylnibr 328 | 1 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ∃!wreu 3348 {cpr 4571 ‘cfv 6463 Edgcedg 27525 UMGraphcumgr 27559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-oadd 8346 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-dju 9727 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-hash 14115 df-edg 27526 df-umgr 27561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |