| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2edgneu | Structured version Visualization version GIF version | ||
| Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 29192. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) |
| Ref | Expression |
|---|---|
| umgrvad2edg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| umgr2edgneu | ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrvad2edg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | 1 | umgrvad2edg 29193 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) |
| 3 | 3simpc 1150 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → (𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) | |
| 4 | neneq 2935 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ¬ 𝑥 = 𝑦) | |
| 5 | 4 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ¬ 𝑥 = 𝑦) |
| 6 | 3, 5 | jca 511 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
| 7 | 6 | reximi 3071 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
| 8 | 7 | reximi 3071 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
| 10 | rexanali 3087 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
| 11 | 10 | rexbii 3080 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
| 12 | rexnal 3085 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
| 13 | 11, 12 | bitri 275 | . . . 4 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
| 14 | 9, 13 | sylib 218 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
| 15 | 14 | intnand 488 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
| 16 | eleq2w 2817 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ 𝑦)) | |
| 17 | 16 | reu4 3686 | . 2 ⊢ (∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ↔ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
| 18 | 15, 17 | sylnibr 329 | 1 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ∃!wreu 3345 {cpr 4577 ‘cfv 6486 Edgcedg 29027 UMGraphcumgr 29061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-hash 14240 df-edg 29028 df-umgr 29063 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |