![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2edgneu | Structured version Visualization version GIF version |
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 28999. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) |
Ref | Expression |
---|---|
umgrvad2edg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgr2edgneu | ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrvad2edg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | umgrvad2edg 29000 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) |
3 | 3simpc 1148 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → (𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) | |
4 | neneq 2941 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ¬ 𝑥 = 𝑦) | |
5 | 4 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ¬ 𝑥 = 𝑦) |
6 | 3, 5 | jca 511 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
7 | 6 | reximi 3079 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
8 | 7 | reximi 3079 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
10 | rexanali 3097 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
11 | 10 | rexbii 3089 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
12 | rexnal 3095 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
13 | 11, 12 | bitri 275 | . . . 4 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
14 | 9, 13 | sylib 217 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
15 | 14 | intnand 488 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
16 | eleq2w 2812 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ 𝑦)) | |
17 | 16 | reu4 3724 | . 2 ⊢ (∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ↔ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
18 | 15, 17 | sylnibr 329 | 1 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 ∃wrex 3065 ∃!wreu 3369 {cpr 4626 ‘cfv 6542 Edgcedg 28834 UMGraphcumgr 28868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-hash 14308 df-edg 28835 df-umgr 28870 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |