MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2edgneu Structured version   Visualization version   GIF version

Theorem umgr2edgneu 29177
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 29175. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.)
Hypothesis
Ref Expression
umgrvad2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2edgneu (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥𝐸 𝑁𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁

Proof of Theorem umgr2edgneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 umgrvad2edg.e . . . . . 6 𝐸 = (Edg‘𝐺)
21umgrvad2edg 29176 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
3 3simpc 1150 . . . . . . . 8 ((𝑥𝑦𝑁𝑥𝑁𝑦) → (𝑁𝑥𝑁𝑦))
4 neneq 2931 . . . . . . . . 9 (𝑥𝑦 → ¬ 𝑥 = 𝑦)
543ad2ant1 1133 . . . . . . . 8 ((𝑥𝑦𝑁𝑥𝑁𝑦) → ¬ 𝑥 = 𝑦)
63, 5jca 511 . . . . . . 7 ((𝑥𝑦𝑁𝑥𝑁𝑦) → ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
76reximi 3067 . . . . . 6 (∃𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦) → ∃𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
87reximi 3067 . . . . 5 (∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦) → ∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
92, 8syl 17 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
10 rexanali 3083 . . . . . 6 (∃𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
1110rexbii 3076 . . . . 5 (∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥𝐸 ¬ ∀𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
12 rexnal 3081 . . . . 5 (∃𝑥𝐸 ¬ ∀𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
1311, 12bitri 275 . . . 4 (∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
149, 13sylib 218 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
1514intnand 488 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥𝐸 𝑁𝑥 ∧ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦)))
16 eleq2w 2812 . . 3 (𝑥 = 𝑦 → (𝑁𝑥𝑁𝑦))
1716reu4 3693 . 2 (∃!𝑥𝐸 𝑁𝑥 ↔ (∃𝑥𝐸 𝑁𝑥 ∧ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦)))
1815, 17sylnibr 329 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥𝐸 𝑁𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343  {cpr 4581  cfv 6486  Edgcedg 29010  UMGraphcumgr 29044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-edg 29011  df-umgr 29046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator