MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04ifb Structured version   Visualization version   GIF version

Theorem fvmptnn04ifb 22766
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fvmptnn04ifb ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐵)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛   𝐴,𝑛   𝑛,𝑉
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)

Proof of Theorem fvmptnn04ifb
StepHypRef Expression
1 fvmptnn04if.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
2 fvmptnn04if.s . . 3 (𝜑𝑆 ∈ ℕ)
323ad2ant1 1133 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑆 ∈ ℕ)
4 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
543ad2ant1 1133 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 ∈ ℕ0)
6 simp3 1138 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 / 𝑛𝐵𝑉)
7 nn0re 12390 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
8 nn0ge0 12406 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
97, 8jca 511 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
10 ne0gt0 11218 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (𝑁 ≠ 0 ↔ 0 < 𝑁))
114, 9, 103syl 18 . . . . . . . 8 (𝜑 → (𝑁 ≠ 0 ↔ 0 < 𝑁))
1211biimprcd 250 . . . . . . 7 (0 < 𝑁 → (𝜑𝑁 ≠ 0))
1312adantr 480 . . . . . 6 ((0 < 𝑁𝑁 < 𝑆) → (𝜑𝑁 ≠ 0))
1413impcom 407 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → 𝑁 ≠ 0)
15143adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 ≠ 0)
16 neneq 2934 . . . . 5 (𝑁 ≠ 0 → ¬ 𝑁 = 0)
1716pm2.21d 121 . . . 4 (𝑁 ≠ 0 → (𝑁 = 0 → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴))
1815, 17syl 17 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑁 = 0 → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴))
1918imp 406 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑁 = 0) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴)
20 eqidd 2732 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐵)
214, 7syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2221adantr 480 . . . . . . . 8 ((𝜑𝑁 < 𝑆) → 𝑁 ∈ ℝ)
23 simpr 484 . . . . . . . 8 ((𝜑𝑁 < 𝑆) → 𝑁 < 𝑆)
2422, 23ltned 11249 . . . . . . 7 ((𝜑𝑁 < 𝑆) → 𝑁𝑆)
2524neneqd 2933 . . . . . 6 ((𝜑𝑁 < 𝑆) → ¬ 𝑁 = 𝑆)
2625adantrl 716 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → ¬ 𝑁 = 𝑆)
27263adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → ¬ 𝑁 = 𝑆)
2827pm2.21d 121 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑁 = 𝑆𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐶))
2928imp 406 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐶)
302nnred 12140 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
31 ltnsym 11211 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁))
3221, 30, 31syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁))
3332com12 32 . . . . . . 7 (𝑁 < 𝑆 → (𝜑 → ¬ 𝑆 < 𝑁))
3433adantl 481 . . . . . 6 ((0 < 𝑁𝑁 < 𝑆) → (𝜑 → ¬ 𝑆 < 𝑁))
3534impcom 407 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → ¬ 𝑆 < 𝑁)
36353adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → ¬ 𝑆 < 𝑁)
3736pm2.21d 121 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑆 < 𝑁𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐷))
3837imp 406 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐷)
391, 3, 5, 6, 19, 20, 29, 38fvmptnn04if 22764 1 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  csb 3845  ifcif 4472   class class class wbr 5089  cmpt 5170  cfv 6481  cr 11005  0cc0 11006   < clt 11146  cle 11147  cn 12125  0cn0 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator