![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifb | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifb | ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) | |
7 | nn0re 12477 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
8 | nn0ge0 12493 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
9 | 7, 8 | jca 512 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) |
10 | ne0gt0 11315 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (𝑁 ≠ 0 ↔ 0 < 𝑁)) | |
11 | 4, 9, 10 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ≠ 0 ↔ 0 < 𝑁)) |
12 | 11 | biimprcd 249 | . . . . . . 7 ⊢ (0 < 𝑁 → (𝜑 → 𝑁 ≠ 0)) |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((0 < 𝑁 ∧ 𝑁 < 𝑆) → (𝜑 → 𝑁 ≠ 0)) |
14 | 13 | impcom 408 | . . . . 5 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → 𝑁 ≠ 0) |
15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑁 ≠ 0) |
16 | neneq 2946 | . . . . 5 ⊢ (𝑁 ≠ 0 → ¬ 𝑁 = 0) | |
17 | 16 | pm2.21d 121 | . . . 4 ⊢ (𝑁 ≠ 0 → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴)) |
18 | 15, 17 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴)) |
19 | 18 | imp 407 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴) |
20 | eqidd 2733 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐵) | |
21 | 4, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
22 | 21 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 ∈ ℝ) |
23 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 < 𝑆) | |
24 | 22, 23 | ltned 11346 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 ≠ 𝑆) |
25 | 24 | neneqd 2945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → ¬ 𝑁 = 𝑆) |
26 | 25 | adantrl 714 | . . . . 5 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → ¬ 𝑁 = 𝑆) |
27 | 26 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ¬ 𝑁 = 𝑆) |
28 | 27 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐶)) |
29 | 28 | imp 407 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐶) |
30 | 2 | nnred 12223 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
31 | ltnsym 11308 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁)) | |
32 | 21, 30, 31 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁)) |
33 | 32 | com12 32 | . . . . . . 7 ⊢ (𝑁 < 𝑆 → (𝜑 → ¬ 𝑆 < 𝑁)) |
34 | 33 | adantl 482 | . . . . . 6 ⊢ ((0 < 𝑁 ∧ 𝑁 < 𝑆) → (𝜑 → ¬ 𝑆 < 𝑁)) |
35 | 34 | impcom 408 | . . . . 5 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → ¬ 𝑆 < 𝑁) |
36 | 35 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
37 | 36 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐷)) |
38 | 37 | imp 407 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐷) |
39 | 1, 3, 5, 6, 19, 20, 29, 38 | fvmptnn04if 22342 | 1 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ⦋csb 3892 ifcif 4527 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6540 ℝcr 11105 0cc0 11106 < clt 11244 ≤ cle 11245 ℕcn 12208 ℕ0cn0 12468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |