Proof of Theorem fvmptnn04ifb
Step | Hyp | Ref
| Expression |
1 | | fvmptnn04if.g |
. 2
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
2 | | fvmptnn04if.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ ℕ) |
3 | 2 | 3ad2ant1 1132 |
. 2
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | | fvmptnn04if.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
5 | 4 | 3ad2ant1 1132 |
. 2
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑁 ∈
ℕ0) |
6 | | simp3 1137 |
. 2
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) |
7 | | nn0re 12242 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
8 | | nn0ge0 12258 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
9 | 7, 8 | jca 512 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ∈ ℝ
∧ 0 ≤ 𝑁)) |
10 | | ne0gt0 11080 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 0 ≤
𝑁) → (𝑁 ≠ 0 ↔ 0 < 𝑁)) |
11 | 4, 9, 10 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ≠ 0 ↔ 0 < 𝑁)) |
12 | 11 | biimprcd 249 |
. . . . . . 7
⊢ (0 <
𝑁 → (𝜑 → 𝑁 ≠ 0)) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ ((0 <
𝑁 ∧ 𝑁 < 𝑆) → (𝜑 → 𝑁 ≠ 0)) |
14 | 13 | impcom 408 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → 𝑁 ≠ 0) |
15 | 14 | 3adant3 1131 |
. . . 4
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑁 ≠ 0) |
16 | | neneq 2949 |
. . . . 5
⊢ (𝑁 ≠ 0 → ¬ 𝑁 = 0) |
17 | 16 | pm2.21d 121 |
. . . 4
⊢ (𝑁 ≠ 0 → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴)) |
18 | 15, 17 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴)) |
19 | 18 | imp 407 |
. 2
⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴) |
20 | | eqidd 2739 |
. 2
⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐵) |
21 | 4, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℝ) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 ∈ ℝ) |
23 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 < 𝑆) |
24 | 22, 23 | ltned 11111 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 ≠ 𝑆) |
25 | 24 | neneqd 2948 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 < 𝑆) → ¬ 𝑁 = 𝑆) |
26 | 25 | adantrl 713 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → ¬ 𝑁 = 𝑆) |
27 | 26 | 3adant3 1131 |
. . . 4
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ¬ 𝑁 = 𝑆) |
28 | 27 | pm2.21d 121 |
. . 3
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐶)) |
29 | 28 | imp 407 |
. 2
⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐶) |
30 | 2 | nnred 11988 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ℝ) |
31 | | ltnsym 11073 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁)) |
32 | 21, 30, 31 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁)) |
33 | 32 | com12 32 |
. . . . . . 7
⊢ (𝑁 < 𝑆 → (𝜑 → ¬ 𝑆 < 𝑁)) |
34 | 33 | adantl 482 |
. . . . . 6
⊢ ((0 <
𝑁 ∧ 𝑁 < 𝑆) → (𝜑 → ¬ 𝑆 < 𝑁)) |
35 | 34 | impcom 408 |
. . . . 5
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → ¬ 𝑆 < 𝑁) |
36 | 35 | 3adant3 1131 |
. . . 4
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
37 | 36 | pm2.21d 121 |
. . 3
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐷)) |
38 | 37 | imp 407 |
. 2
⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐷) |
39 | 1, 3, 5, 6, 19, 20, 29, 38 | fvmptnn04if 21998 |
1
⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) |