![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptnn04ifb | Structured version Visualization version GIF version |
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
fvmptnn04if.g | ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) |
fvmptnn04if.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
fvmptnn04if.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
fvmptnn04ifb | ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptnn04if.g | . 2 ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) | |
2 | fvmptnn04if.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | 2 | 3ad2ant1 1130 | . 2 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑆 ∈ ℕ) |
4 | fvmptnn04if.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 4 | 3ad2ant1 1130 | . 2 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑁 ∈ ℕ0) |
6 | simp3 1135 | . 2 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) | |
7 | nn0re 12506 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
8 | nn0ge0 12522 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
9 | 7, 8 | jca 510 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) |
10 | ne0gt0 11344 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (𝑁 ≠ 0 ↔ 0 < 𝑁)) | |
11 | 4, 9, 10 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ≠ 0 ↔ 0 < 𝑁)) |
12 | 11 | biimprcd 249 | . . . . . . 7 ⊢ (0 < 𝑁 → (𝜑 → 𝑁 ≠ 0)) |
13 | 12 | adantr 479 | . . . . . 6 ⊢ ((0 < 𝑁 ∧ 𝑁 < 𝑆) → (𝜑 → 𝑁 ≠ 0)) |
14 | 13 | impcom 406 | . . . . 5 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → 𝑁 ≠ 0) |
15 | 14 | 3adant3 1129 | . . . 4 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → 𝑁 ≠ 0) |
16 | neneq 2936 | . . . . 5 ⊢ (𝑁 ≠ 0 → ¬ 𝑁 = 0) | |
17 | 16 | pm2.21d 121 | . . . 4 ⊢ (𝑁 ≠ 0 → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴)) |
18 | 15, 17 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑁 = 0 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴)) |
19 | 18 | imp 405 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑁 = 0) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐴) |
20 | eqidd 2726 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐵) | |
21 | 4, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
22 | 21 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 ∈ ℝ) |
23 | simpr 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 < 𝑆) | |
24 | 22, 23 | ltned 11375 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → 𝑁 ≠ 𝑆) |
25 | 24 | neneqd 2935 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 < 𝑆) → ¬ 𝑁 = 𝑆) |
26 | 25 | adantrl 714 | . . . . 5 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → ¬ 𝑁 = 𝑆) |
27 | 26 | 3adant3 1129 | . . . 4 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ¬ 𝑁 = 𝑆) |
28 | 27 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑁 = 𝑆 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐶)) |
29 | 28 | imp 405 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑁 = 𝑆) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐶) |
30 | 2 | nnred 12252 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
31 | ltnsym 11337 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁)) | |
32 | 21, 30, 31 | syl2anc 582 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁)) |
33 | 32 | com12 32 | . . . . . . 7 ⊢ (𝑁 < 𝑆 → (𝜑 → ¬ 𝑆 < 𝑁)) |
34 | 33 | adantl 480 | . . . . . 6 ⊢ ((0 < 𝑁 ∧ 𝑁 < 𝑆) → (𝜑 → ¬ 𝑆 < 𝑁)) |
35 | 34 | impcom 406 | . . . . 5 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆)) → ¬ 𝑆 < 𝑁) |
36 | 35 | 3adant3 1129 | . . . 4 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → ¬ 𝑆 < 𝑁) |
37 | 36 | pm2.21d 121 | . . 3 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝑆 < 𝑁 → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐷)) |
38 | 37 | imp 405 | . 2 ⊢ (((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) ∧ 𝑆 < 𝑁) → ⦋𝑁 / 𝑛⦌𝐵 = ⦋𝑁 / 𝑛⦌𝐷) |
39 | 1, 3, 5, 6, 19, 20, 29, 38 | fvmptnn04if 22764 | 1 ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ⦋csb 3886 ifcif 4525 class class class wbr 5144 ↦ cmpt 5227 ‘cfv 6543 ℝcr 11132 0cc0 11133 < clt 11273 ≤ cle 11274 ℕcn 12237 ℕ0cn0 12497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |