MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04ifb Structured version   Visualization version   GIF version

Theorem fvmptnn04ifb 22200
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fvmptnn04ifb ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐵)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛   𝐴,𝑛   𝑛,𝑉
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)

Proof of Theorem fvmptnn04ifb
StepHypRef Expression
1 fvmptnn04if.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
2 fvmptnn04if.s . . 3 (𝜑𝑆 ∈ ℕ)
323ad2ant1 1133 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑆 ∈ ℕ)
4 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
543ad2ant1 1133 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 ∈ ℕ0)
6 simp3 1138 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 / 𝑛𝐵𝑉)
7 nn0re 12422 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
8 nn0ge0 12438 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
97, 8jca 512 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
10 ne0gt0 11260 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (𝑁 ≠ 0 ↔ 0 < 𝑁))
114, 9, 103syl 18 . . . . . . . 8 (𝜑 → (𝑁 ≠ 0 ↔ 0 < 𝑁))
1211biimprcd 249 . . . . . . 7 (0 < 𝑁 → (𝜑𝑁 ≠ 0))
1312adantr 481 . . . . . 6 ((0 < 𝑁𝑁 < 𝑆) → (𝜑𝑁 ≠ 0))
1413impcom 408 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → 𝑁 ≠ 0)
15143adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 ≠ 0)
16 neneq 2949 . . . . 5 (𝑁 ≠ 0 → ¬ 𝑁 = 0)
1716pm2.21d 121 . . . 4 (𝑁 ≠ 0 → (𝑁 = 0 → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴))
1815, 17syl 17 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑁 = 0 → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴))
1918imp 407 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑁 = 0) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴)
20 eqidd 2737 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐵)
214, 7syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2221adantr 481 . . . . . . . 8 ((𝜑𝑁 < 𝑆) → 𝑁 ∈ ℝ)
23 simpr 485 . . . . . . . 8 ((𝜑𝑁 < 𝑆) → 𝑁 < 𝑆)
2422, 23ltned 11291 . . . . . . 7 ((𝜑𝑁 < 𝑆) → 𝑁𝑆)
2524neneqd 2948 . . . . . 6 ((𝜑𝑁 < 𝑆) → ¬ 𝑁 = 𝑆)
2625adantrl 714 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → ¬ 𝑁 = 𝑆)
27263adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → ¬ 𝑁 = 𝑆)
2827pm2.21d 121 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑁 = 𝑆𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐶))
2928imp 407 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐶)
302nnred 12168 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
31 ltnsym 11253 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁))
3221, 30, 31syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁))
3332com12 32 . . . . . . 7 (𝑁 < 𝑆 → (𝜑 → ¬ 𝑆 < 𝑁))
3433adantl 482 . . . . . 6 ((0 < 𝑁𝑁 < 𝑆) → (𝜑 → ¬ 𝑆 < 𝑁))
3534impcom 408 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → ¬ 𝑆 < 𝑁)
36353adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → ¬ 𝑆 < 𝑁)
3736pm2.21d 121 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑆 < 𝑁𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐷))
3837imp 407 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐷)
391, 3, 5, 6, 19, 20, 29, 38fvmptnn04if 22198 1 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  csb 3855  ifcif 4486   class class class wbr 5105  cmpt 5188  cfv 6496  cr 11050  0cc0 11051   < clt 11189  cle 11190  cn 12153  0cn0 12413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator