MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnn04ifb Structured version   Visualization version   GIF version

Theorem fvmptnn04ifb 22745
Description: The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
fvmptnn04if.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
fvmptnn04if.s (𝜑𝑆 ∈ ℕ)
fvmptnn04if.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fvmptnn04ifb ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐵)
Distinct variable groups:   𝑛,𝑁   𝑆,𝑛   𝐴,𝑛   𝑛,𝑉
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐺(𝑛)

Proof of Theorem fvmptnn04ifb
StepHypRef Expression
1 fvmptnn04if.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵))))
2 fvmptnn04if.s . . 3 (𝜑𝑆 ∈ ℕ)
323ad2ant1 1133 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑆 ∈ ℕ)
4 fvmptnn04if.n . . 3 (𝜑𝑁 ∈ ℕ0)
543ad2ant1 1133 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 ∈ ℕ0)
6 simp3 1138 . 2 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 / 𝑛𝐵𝑉)
7 nn0re 12458 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
8 nn0ge0 12474 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
97, 8jca 511 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
10 ne0gt0 11286 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → (𝑁 ≠ 0 ↔ 0 < 𝑁))
114, 9, 103syl 18 . . . . . . . 8 (𝜑 → (𝑁 ≠ 0 ↔ 0 < 𝑁))
1211biimprcd 250 . . . . . . 7 (0 < 𝑁 → (𝜑𝑁 ≠ 0))
1312adantr 480 . . . . . 6 ((0 < 𝑁𝑁 < 𝑆) → (𝜑𝑁 ≠ 0))
1413impcom 407 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → 𝑁 ≠ 0)
15143adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → 𝑁 ≠ 0)
16 neneq 2932 . . . . 5 (𝑁 ≠ 0 → ¬ 𝑁 = 0)
1716pm2.21d 121 . . . 4 (𝑁 ≠ 0 → (𝑁 = 0 → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴))
1815, 17syl 17 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑁 = 0 → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴))
1918imp 406 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑁 = 0) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐴)
20 eqidd 2731 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 0 < 𝑁𝑁 < 𝑆) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐵)
214, 7syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
2221adantr 480 . . . . . . . 8 ((𝜑𝑁 < 𝑆) → 𝑁 ∈ ℝ)
23 simpr 484 . . . . . . . 8 ((𝜑𝑁 < 𝑆) → 𝑁 < 𝑆)
2422, 23ltned 11317 . . . . . . 7 ((𝜑𝑁 < 𝑆) → 𝑁𝑆)
2524neneqd 2931 . . . . . 6 ((𝜑𝑁 < 𝑆) → ¬ 𝑁 = 𝑆)
2625adantrl 716 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → ¬ 𝑁 = 𝑆)
27263adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → ¬ 𝑁 = 𝑆)
2827pm2.21d 121 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑁 = 𝑆𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐶))
2928imp 406 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑁 = 𝑆) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐶)
302nnred 12208 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
31 ltnsym 11279 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁))
3221, 30, 31syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁 < 𝑆 → ¬ 𝑆 < 𝑁))
3332com12 32 . . . . . . 7 (𝑁 < 𝑆 → (𝜑 → ¬ 𝑆 < 𝑁))
3433adantl 481 . . . . . 6 ((0 < 𝑁𝑁 < 𝑆) → (𝜑 → ¬ 𝑆 < 𝑁))
3534impcom 407 . . . . 5 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆)) → ¬ 𝑆 < 𝑁)
36353adant3 1132 . . . 4 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → ¬ 𝑆 < 𝑁)
3736pm2.21d 121 . . 3 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝑆 < 𝑁𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐷))
3837imp 406 . 2 (((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) ∧ 𝑆 < 𝑁) → 𝑁 / 𝑛𝐵 = 𝑁 / 𝑛𝐷)
391, 3, 5, 6, 19, 20, 29, 38fvmptnn04if 22743 1 ((𝜑 ∧ (0 < 𝑁𝑁 < 𝑆) ∧ 𝑁 / 𝑛𝐵𝑉) → (𝐺𝑁) = 𝑁 / 𝑛𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  csb 3865  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  cr 11074  0cc0 11075   < clt 11215  cle 11216  cn 12193  0cn0 12449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator